We're ISO 9002 certified.

When you partner with HOBART, you can feel good knowing we meet ISO 9002 standards — the most rigorous standards for production and distribution around. It's your guarantee for the highest levels of quality, satisfaction and efficiency on the everything carrying the HOBART name.

We're on the web.

Our Web site is a resource on welding, with detailed explanations of process applications and HOBART products. New products are featured regularly, so be sure to bookmark our address and visit often! Within the website, you can download data sheets and MSDS sheets in PDF format. Also for your convenience, we have posted our Distributor Locator on the site. You can find us at http://www.hobartbrothers.com.

Notice:

The foregoing values represent test results under controlled laboratory conditions, not guarantees for use in the field. Actual use of the product may produce varying results due to conditions and welding techniques over which HOBART has no control, including but not limited to plate chemistry, weldment design, fabrication methods, wire size, welding procedure, service requirements and the environment. The purchaser is solely responsible for determining the suitability of HOBART products for the purchaser’s own use. Any prior representation shall not be binding. HOBART DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE WITH RESPECT TO ITS PRODUCTS.

Caution:

Consumers should be thoroughly familiar with the safety precautions shown in the Warning Label posted on each shipment and American National Standard Z49.1 "Safety in Welding and Cutting" published by the American Welding Society, 550 NW LeJeune Road, Miami, Florida 33135: OSHA Safety and Health Standards, 29 CFT 1910 available from the U.S. Department of Labor, Washington, D.C. 20210.

Hobart Brothers Company

101 Trade Square East
Troy, OH 45373 USA
www.hobartbrothers.com

To place an order, contact the distributor nearest you.

©Hobart Brothers Company Printed in U.S.A.
Table of Contents

Low Alloy

- History .. 2
- General Information .. 3
- AWS Classification Stick Electrodes 4
- AWS Classification Solid Wires 5
- AWS Classification Flux Cored Wires 6
- AWS Classification Metal Cored Wires 7
- Master List of Products 8
- Applications A1 .. 9
- Applications K2/K3/K4 10
- Product Classifications K2/K3/K4 10-15
- Applications M ... 16
- Product Classifications M 16-17
- Applications B ... 18
- Product Classifications B 18-23
- Applications C1/C2/C3 24
- Product Classifications C1/C2/C3 24-25
- Applications N ... 26
- Product Classifications N 26-29
- Applications D2 .. 30
- Product Classifications D2 30-31
- Applications W ... 32
- Product Classifications W 32
- Stick Electrode Approvals & Comparisons 33
- Product Information ... 34
- Tubular Product Characteristics 35
- Product Conformances and Approvals 36-37
- Product Packaging Information 38-42
After 90 years in the business, Hobart Brothers is Welding. And Welding is Hobart Brothers.

Much has changed in industry since 1920; Hobart was there every step of the way. You might even say the company did more than simply keep up with new technologies and processes.

It helped forge them.

Hobart has become a world leader in the field. Today you can find the broadest selection of filler metals in the United States. HOBART & TRI-MARK are well known brands of Hobart Brothers.

Training and expertise are key products of Hobart as well.

Such a respectable past can only be built by knowledgeable people. That’s why, whether you have a question on technique, materials or applications, you know who to call. 1-800-532-2618

The company who touched off that first spark over 90 years ago.

Hobart Brothers has served major metal fabrication markets as a top-quality manufacturer of flux-cored and metal-cored wires for over 25 years. Throughout that time, we’ve consistently focused our efforts on welding research and product development and, as a result, now offer one of the most complete product lines in the industry today. Recognized worldwide as the “specialists in flux-cored and metal-cored wires,” Hobart Brothers features over 52 different products for welding carbon and low alloy steels, in addition to special formulations for applications in the shipbuilding, infrastructure construction, offshore oil, and heavy equipment industries.
WHAT IS LOW ALLOY?

Typically:
• 80,000 psi ultimate tensile strength and greater
• Addition of certain alloying elements such as Nickel, Molybdenum, Manganese, Chromium, etc. for specific applications and performance

WHY & WHERE TO USE LOW ALLOY?

• Higher strength based materials
• Chemistry/chemical requirements
 Chrome-Moly, Nickel, etc.
• Application requirements
 High strength
 Heat/Corrosion Applications
 Heat treating cycles – PWHT
 Weathering Steels
How AWS classifies low alloy covered electrodes (AWS A5.5)

<table>
<thead>
<tr>
<th>AWS</th>
<th>Suffix</th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
<th>V</th>
<th>P</th>
<th>S</th>
<th>Cu</th>
<th>Al</th>
<th>Nb</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>E7018</td>
<td>A1</td>
<td>.12</td>
<td>.00</td>
<td>.80</td>
<td>—</td>
<td>—</td>
<td>40-65</td>
<td>—</td>
<td>.03</td>
<td>.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E8018</td>
<td>B2</td>
<td>.05</td>
<td>.00</td>
<td>.80</td>
<td>—</td>
<td>—</td>
<td>1.00-1.50</td>
<td>40-65</td>
<td>—</td>
<td>.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E8018</td>
<td>B2</td>
<td>.05-12</td>
<td>.00</td>
<td>.80</td>
<td>—</td>
<td>—</td>
<td>1.00-1.50</td>
<td>40-65</td>
<td>—</td>
<td>.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E9018</td>
<td>B3</td>
<td>.05</td>
<td>.00</td>
<td>.80</td>
<td>—</td>
<td>—</td>
<td>2.00-2.50</td>
<td>90-1.20</td>
<td>—</td>
<td>.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E9018</td>
<td>B3</td>
<td>.05-12</td>
<td>.00</td>
<td>.80</td>
<td>—</td>
<td>—</td>
<td>2.00-2.50</td>
<td>90-1.20</td>
<td>—</td>
<td>.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E9018</td>
<td>B6</td>
<td>.05-10</td>
<td>1.0</td>
<td>.90</td>
<td>.40</td>
<td>4.0-6.0</td>
<td>.45-65</td>
<td>—</td>
<td>.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E9018</td>
<td>B6</td>
<td>.05-10</td>
<td>1.0</td>
<td>.90</td>
<td>.40</td>
<td>8.0-10.5</td>
<td>85-1.20</td>
<td>—</td>
<td>.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E9018</td>
<td>B9</td>
<td>.08-13</td>
<td>1.20</td>
<td>.30</td>
<td>8.0</td>
<td>8.0-10.5</td>
<td>85-1.20</td>
<td>15-30</td>
<td>.01</td>
<td>.01</td>
<td>.25</td>
<td>.04</td>
<td>.02-10</td>
<td>.02-07</td>
</tr>
<tr>
<td>E9018</td>
<td>C1</td>
<td>.12</td>
<td>1.25</td>
<td>.80</td>
<td>2.00-2.75</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E9018</td>
<td>C2</td>
<td>.12</td>
<td>1.25</td>
<td>.80</td>
<td>3.00-3.75</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E9018</td>
<td>C3</td>
<td>.12</td>
<td>1.25</td>
<td>.80</td>
<td>80-1.18</td>
<td>.15</td>
<td>.35</td>
<td>.05</td>
<td>.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E10018</td>
<td>D2</td>
<td>.15</td>
<td>1.65-2.00</td>
<td>.80</td>
<td>—</td>
<td>25-45</td>
<td>—</td>
<td>.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXXX</td>
<td>G**</td>
<td>—</td>
<td>1.00 Min</td>
<td>.80 Min</td>
<td>.50 Min</td>
<td>20 Min</td>
<td>20 Min</td>
<td>.10 Min</td>
<td>.03</td>
<td>.03</td>
<td>.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E9018</td>
<td>M</td>
<td>.10</td>
<td>.60-1.25</td>
<td>.80</td>
<td>1.40-1.80</td>
<td>.15</td>
<td>.35</td>
<td>.05</td>
<td>.03</td>
<td>.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E10018M</td>
<td>M</td>
<td>.10</td>
<td>.60-1.25</td>
<td>.80</td>
<td>1.40-1.80</td>
<td>.15</td>
<td>.35</td>
<td>.05</td>
<td>.03</td>
<td>.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E11018M</td>
<td>M</td>
<td>.10</td>
<td>1.30-1.80</td>
<td>.60</td>
<td>1.25-2.50</td>
<td>.40</td>
<td>25-50</td>
<td>.05</td>
<td>.03</td>
<td>.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12018</td>
<td>M</td>
<td>.10</td>
<td>1.30-2.25</td>
<td>.60</td>
<td>1.75-2.50</td>
<td>30-1.50</td>
<td>30-55</td>
<td>.05</td>
<td>.03</td>
<td>.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E7010</td>
<td>P1</td>
<td>.20</td>
<td>1.20</td>
<td>.60</td>
<td>1.00</td>
<td>.30</td>
<td>50</td>
<td>.10</td>
<td>.03</td>
<td>.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E8010</td>
<td>P1</td>
<td>.20</td>
<td>1.20</td>
<td>.60</td>
<td>1.00</td>
<td>.30</td>
<td>50</td>
<td>.10</td>
<td>.03</td>
<td>.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Amount depends on electrode classification. Single values indicate maximum
** All G classifications have the same chemical minimum requirements
How AWS classifies low alloy solid electrodes, GMAW, GTAW and PAW (AWS A5.28)

ER80S-D2

Electrode or rod
Tensile in ksi
Solid
Chemical composition

Low Alloy Low Alloy

AWS CLASSIFICATION-SOLID WIRES

Chemical Composition of Solid Wires Using CO₂ Shielding Gas

<table>
<thead>
<tr>
<th>AWS classification</th>
<th>Shielding gas</th>
<th>Tensile Strength ksi (MPa)</th>
<th>Yield Strength ksi (MPa)</th>
<th>% Elongation Min. in 2" (50 mm)</th>
<th>Impact strength Min. ft-lbs at °F (J at °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER80S-D2</td>
<td>CO₂</td>
<td>80 (550)</td>
<td>68 (470)</td>
<td>17</td>
<td>20 at -20° (27 at -29°)</td>
</tr>
</tbody>
</table>

CHEMICAL COMPOSITION

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
<th>Cu</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>.07 -.12</td>
<td>1.60 - 2.10</td>
<td>.50 - .80</td>
<td>.025</td>
<td>.025</td>
<td>.15</td>
<td>—</td>
<td>.40 - .60</td>
<td>.50</td>
<td>—</td>
</tr>
</tbody>
</table>
HOW AWS CLASSIFIES LOW ALLOY FLUX CORED (TUBULAR) WIRES, FCAW PROCESS (AWS A5.29)

Electrode
- Tensile X 10 ksi
- Position:
 - "0" = flat/horizontal,
 - "1" = all position
- Flux-cored (tubular) electrode

Gas type, usability and performance capabilities
- Hydrogen: H4 = less than 4 ml/100g,
 - H8 = less than 8 ml/100g
- Impacts: 20°F lower than the temperature shown for that classification
- C = 100% CO₂
- M = Mixed Gas: 75%-80% Ar, balance CO₂

Deposit composition designator. Two, three or four digits are used to designate the chemical composition of the deposited weld metal. The letter “G” indicates that the chemical composition is not specified.

Low Alloy Flux Cored Designator Chart

<table>
<thead>
<tr>
<th>Weld Metal for Weathering Steels</th>
<th>General Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>E81T1-W2C Addition of Copper for Weathering Steels</td>
<td>E101T1-GM .50 - 1.75% Manganese, 1.00 - 2.00% Nickel, .35% Max. Molybdenum, 100ksi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carbon-Molybdenum Weld Metal</th>
<th>Chromium-Molybdenum Weld Metal</th>
</tr>
</thead>
<tbody>
<tr>
<td>E81T1-A1C .12% Max Carbon, .40 - .65% Molybdenum, 80ksi</td>
<td>E80T1-B2C 1.00 - 1.50% Chromium, .40 - .65% Molybdenum</td>
</tr>
<tr>
<td>E81T1-B2C/M 1.00 - 1.50% Chromium, .40 - .65% Molybdenum</td>
<td>E90T1-B3C 2.00 - 2.50% Chromium, .90 - 1.20% Molybdenum</td>
</tr>
<tr>
<td>E90T5-B3M 2.00 - 2.50% Chromium, .90 - 1.20% Molybdenum</td>
<td>E91T1-B3C/M 2.00 - 2.50% Chromium, .90 - 1.20% Molybdenum</td>
</tr>
<tr>
<td>E81T1-B6C/M 4.00 - 6.00% Chromium, .45 - .65% Molybdenum</td>
<td>E81T1-B9M 8.90 - 10.50% Chromium, .85 - 1.30% Vanadium</td>
</tr>
<tr>
<td>E91T1-B9M</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nickel Weld Metal</th>
<th>Manganese-Molybdenum Weld Metal</th>
</tr>
</thead>
<tbody>
<tr>
<td>E80T1-Ni1C/M .80 - 1.20% Nickel, 80ksi</td>
<td>E81T1-K2C/M .50 - 1.75% Manganese, 1.00 - 2.00% Nickel, .35% Max. Molybdenum, 80ksi</td>
</tr>
<tr>
<td>E81T1-Ni1C/M .80 - 1.20% Nickel, 80ksi</td>
<td>E90T1-K2C .50 - 1.75% Manganese, 1.00 - 2.00% Nickel, .35% Max. Molybdenum, 90ksi</td>
</tr>
<tr>
<td>E81T1-Ni2C/M 1.75 - 2.25% Nickel, 80ksi</td>
<td>E90T5-K2C .50 - 1.75% Manganese, 1.00 - 2.00% Nickel, .35% Max. Molybdenum, 90ksi</td>
</tr>
<tr>
<td>E91T1-Ni2C 1.75 - 2.25% Nickel, 90ksi</td>
<td>E91T1-K2C/M .50 - 1.75% Manganese, 1.00 - 2.00% Nickel, .35% Max. Molybdenum, 90ksi</td>
</tr>
<tr>
<td>E100T1-K3C .75 - 2.25% Manganese, 1.20 - 2.60% Nickel, .25 - .65% Molybdenum, 100ksi</td>
<td>E110T1-K3C .75 - 2.25% Manganese, 1.20 - 2.60% Nickel, .25 - .65% Molybdenum, 110ksi</td>
</tr>
<tr>
<td>E110T5-K3C .75 - 2.25% Manganese, 1.20 - 2.60% Nickel, .25 - .65% Molybdenum, 110ksi</td>
<td>E111T1-K3C .75 - 2.25% Manganese, 1.20 - 2.60% Nickel, .25 - .65% Molybdenum, 110ksi</td>
</tr>
<tr>
<td>E111T5-K3M .75 - 2.25% Manganese, 1.20 - 2.60% Nickel, .25 - .65% Molybdenum, 110ksi</td>
<td>E120T5-K4C 1.20 - 2.25% Manganese, 1.75 - 2.60% Nickel, .20 - .65% Chromium, 120ksi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weld Metal for Weathering Steels</th>
<th>General Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>E81T1-W2C Addition of Copper for Weathering Steels</td>
<td>E101T1-GM .50 - 1.75% Manganese, 1.00 - 2.00% Nickel, .35% Max. Molybdenum, 100ksi</td>
</tr>
</tbody>
</table>
Tri-Mark’s metal-cored low alloy wires are uniquely formulated for specific metal types like nickel, chrome-moly, high-strength and T1-type steels. Much like their carbon steel counterparts, metal-cored wires for low alloys possess outstanding characteristics and deliver many benefits to enhance the “total welding solution.”

HOW AWS CLASSIFIES LOW ALLOY METAL-CORED (COMPOSITE) WIRES, GMAW PROCESS (AWS A5.28)

<table>
<thead>
<tr>
<th>Electrode</th>
<th>Tensile X 10 ksi</th>
<th>Composite metal-cored electrode</th>
</tr>
</thead>
<tbody>
<tr>
<td>E80C-X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMPOSITE ELECTRODE ALLOY DESIGNATOR CHART

<table>
<thead>
<tr>
<th>Weld Metal Type</th>
<th>Electrode Designations</th>
<th>Chemical Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium-Molybdenum Weld Metal</td>
<td>E80C-B2</td>
<td>1.00 - 1.50% Chromium, .50% Molybdenum</td>
</tr>
<tr>
<td>Nickel Steel Weld Metal</td>
<td>E80C-Ni1</td>
<td>1.00% Nickel, 80ksi</td>
</tr>
<tr>
<td></td>
<td>E80C-Ni2</td>
<td>2.00% Nickel, 80ksi</td>
</tr>
<tr>
<td>Manganese-Molybdenum Steel Weld Metal</td>
<td>E90C-D2</td>
<td>1.00 - 1.90% Manganese, .50% Molybdenum, 90ksi</td>
</tr>
<tr>
<td>Manganese-Nickel-Molybdenum Steel Weld Metal</td>
<td>E90C-K3</td>
<td>.75 - 2.25% Manganese, .50 - 2.50% Nickel, .25 - .65% Molybdenum, 90ksi</td>
</tr>
<tr>
<td></td>
<td>E100C-K3</td>
<td>.75 - 2.25% Manganese, .50 - 2.50% Nickel, .25 - .65% Molybdenum, 100ksi</td>
</tr>
<tr>
<td></td>
<td>E110C-K4</td>
<td>.75 - 2.25% Manganese, .50 - 2.50% Nickel, .25 - .65% Molybdenum, .15 - .65% Chromium, 110ksi</td>
</tr>
<tr>
<td>Product Class</td>
<td>Description</td>
<td>Stick Electrode</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>-----------------------</td>
</tr>
<tr>
<td>A1</td>
<td>Carbon-Molybenum filler metal with .5% Moly to increase the strength of the weld metal, especially at elevated temperature. This filler metal keeps it's tensile strength after post weld heat treatment (PWHT)</td>
<td>Hobart Hoballoy 7018A1</td>
</tr>
<tr>
<td>B3</td>
<td>2.25% Chrome - 1.0% Molybdenum for high temperature service applications. Typically used for welding P21 and P22 Chrome-Moly pipe.</td>
<td>Hobart Hoballoy 9018B3</td>
</tr>
<tr>
<td>B6</td>
<td>4 - 6% Chrome - .50% Molybdenum for high temperature service applications. Typically used for welding 5% Chrome - .50% Moly pipe and steels.</td>
<td>Hobart Hoballoy 8018B6</td>
</tr>
<tr>
<td>B8</td>
<td>8 - 10.50% Chrome - 1.0% Molybdenum for high temperature service applications. Typically used for welding P91 and P92 Chrome-Moly Pipe.</td>
<td>Hobart Hoballoy 8018B8</td>
</tr>
<tr>
<td>B9</td>
<td>8 - 10.50% Chrome - 1.0% Molybdenum for high temperature service applications. Typically used for welding P91 and P92 Chrome-Moly Pipe.</td>
<td>Hobart Hoballoy 9015B9</td>
</tr>
<tr>
<td>D2</td>
<td>Manganese-Molybdenum filler metal used for welding a wide variety of steels including HSLA, A514 (T1), and HY80 - HY100.</td>
<td>Hobart Hoballoy 10018D2</td>
</tr>
<tr>
<td>K2</td>
<td>Manganese-Nickel-Molybdenum with 1.5% Nickel and up to .35% Molybdenum to weld higher strength steels such as HY80, HY100.</td>
<td>Hobart FabCO 81K2-C</td>
</tr>
<tr>
<td>K3</td>
<td>Manganese-Nickel-Molybdenum with 1.2 - 2.6% Nickel and up to .65% Molybdenum to weld higher strength steels such as HY80, HY100, ASTM A514 (T1)</td>
<td>Tri-Mark TM-10K3</td>
</tr>
<tr>
<td>K4</td>
<td>Manganese-Nickel-Molybdenum with 1.75 - 2.60% Nickel and up to .65% Molybdenum with the addition of .20 - .60% chrome to weld higher strength steels such as HY80, HY100 and ASTM A514 (T1)</td>
<td>Tri-Mark TM-125K4</td>
</tr>
<tr>
<td>M</td>
<td>Military similar electrodes designed for welding high strength steels such as HY80, HY100, A514 (T1)</td>
<td>Hobart Hoballoy 9018M</td>
</tr>
<tr>
<td>Ni1</td>
<td>1% Nickel alloyed to increase strength and improved impact notch toughness. Can also be used to weld weathering steels but will not immediately color match.</td>
<td>Tri-Mark TM-811N1</td>
</tr>
<tr>
<td>Ni2</td>
<td>Addition of 2% Nickel to improve impact notch toughness.</td>
<td>Tri-Mark TM-811N2</td>
</tr>
<tr>
<td>C1</td>
<td>Addition of 2 - 2.75% Nickel to improve impact notch toughness.</td>
<td>Hobart Hoballoy 8018C1</td>
</tr>
<tr>
<td>C2</td>
<td>Addition of 3 - 3.75% Nickel to improve impact notch toughness.</td>
<td>Hobart Hoballoy 8018C2</td>
</tr>
<tr>
<td>C3</td>
<td>Addition of .8 - 1.10% Nickel to improve impact notch toughness.</td>
<td>Hobart Hoballoy 8018C3</td>
</tr>
<tr>
<td>W</td>
<td>Addition of .5% copper to weld weathering steels and where rapid color matching is required.</td>
<td>Tri-Mark TM-811W</td>
</tr>
</tbody>
</table>

For further chemistry and mechanical properties, please refer to the chart on page 38 and the datasheets available on hobartbrothers.com.
A1

Description
Carbon-Molybdenum filler metal with .5% Moly to increase the strength of the weld metal, especially at elevated temperatures. This filler metal keeps its tensile strength after post-weld heat treatment (PWHT) applications.

Typical Applications
Boiler and Pressure Vessel, Piping, Power Plant, Carbon-Molybdenum base materials such as A161, A204, A302 Gr. A, and A335-P1 Pipe.

Key of Symbols

HOBALLOY® 7018A1 /
HOBART®
AWS E7018-A1 H4R
For pressure vessel applications, the Hoballoy 7018A1 is an outstanding choice. When welding .50% molybdenum steel and other low alloy steels, the Hoballoy 7018A1 offers resistance to moisture reabsorption. This important feature helps prevent hydrogen cracking and aids in the elimination of starting porosity.

Typical applications:
• construction and maintenance of boilers
• piping
• tubing

Available diameter and recommended operating ranges:
3/32” (2.4 mm) 70-110 amps
1/8” (3.2 mm) 90-160 amps
5/32” (4.0 mm) 130-220 amps

Type of current: DCEP or AC

Approvals and conformance:
• AWS A5.5, E7018-A1 H4R
• ASME SFA 5.5, F-4, A-2, E7018-A1
• ABS E7018-A1

TM-811A1 / TRI-MARK®
TM-811A1 deposits weld metal with .50% molybdenum, which prevents deterioration in tensile strength after stress relief under specified conditions. It is intended for the welding of parts of similar composition, such as those found in power plant pipe systems. It is used for the repair as well as the fabrication of .50% molybdenum steel castings. TM-811A1 offers good weldability in all positions, with a fast-freezing slag that removes very easily. The wire is recommended for single and multiple pass welding in all positions using 100% CO₂ shielding gas.

Specifications:
E81T1-A1C per AWS A5.29, ASME SFA 5.29

Shielding Gas:
100% CO₂, 35-50 ccf

Welding Positions:
All positions

Standard Diameters:
.045”, 1/16”

Characteristics:
• Good weldability in all positions.
• Fast-freezing slag removes easily.
• Recommended for single and multiple pass welding using CO₂ shielding gas.

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th>Element</th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>(%)</td>
<td>.04</td>
<td>.83</td>
<td>.32</td>
<td>.01</td>
<td>.01</td>
<td>.49</td>
</tr>
</tbody>
</table>

Mechanical Properties:

Tensile Strength: 94,000 psi
Yield Strength: 83,000 psi
Elongation: 26%
CVN: not required

The above properties were determined with 100% CO₂ shielding gas.

Stress Relieved 1 hr. @ 1150°F
Product Classifications

- **K2**: Low Alloy
- **K3**: Increasing amounts of Nickel and Manganese
- **K4**: Addition of 0.20 - 0.60 Chrome

Applications

Typical Applications:
- Crane manufacturing
- Heavy equipment
- Earthmoving
- Offshore Oil Structures
- Shipbuilding Fabrication
- Steels including HY80, HY100, ASTM A710, and A514.

TM-881K2

TM-881K2 was developed in .045” (1.2 mm) diameter to be used primarily in the offshore market because of outstanding impact resistance at low temperatures. Shipbuilding applications will likely benefit from the all-position capabilities of TM-881K2. The wire has a stable soft spray transfer with almost no spatter when using 75-85% Ar/20-15% CO2. 100% CO2 gas shielding may be used with some sacrifice in fume, spatter, and impact resistance. Excellent all-position characteristics give this product the advantage over competitive products.

Specifications:
- E81T1-K2 CJ H8; E81T1-K2 MJ H8 per AWS A5.29, ASME SFA 5.29
- ABS to AWS E81T1-K2M
- DNV Grade VY42MS H10
- Lloyd’s Register of Shipping Grade 4Y42S H10
- Bureau Veritas S5Y42M

Shielding Gas:
- 100% CO2, 75-85% Ar/bal CO2, 35-50 cfh

Welding Positions:
- All positions

Standard Diameter:
- .045”

Characteristics:
- Designed for offshore applications.
- Argon/CO2 shielding gas for lower spatter and fume.
- CTOD exceeds .25 mm at -10°C.
- Good impacts at -60°C (-76°F) both as welded and stress relieved.
- Hydrogen levels below 5 ml/100 g.

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Mo</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>80% Ar/20% CO2</td>
<td>.08</td>
<td>.11</td>
<td>.02</td>
<td>.019</td>
<td>.01</td>
<td>1.46</td>
<td></td>
</tr>
<tr>
<td>100% CO2</td>
<td>.05</td>
<td>.81</td>
<td>.14</td>
<td>.008</td>
<td>.015</td>
<td>.02</td>
<td>1.64</td>
</tr>
</tbody>
</table>

Mechanical Properties:

<table>
<thead>
<tr>
<th></th>
<th>80% Ar/20% CO2</th>
<th>100% CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength</td>
<td>95,000 psi</td>
<td>85,000 psi</td>
</tr>
<tr>
<td>(Aged 48hrs., 600°F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield Strength</td>
<td>85,000 psi</td>
<td>75,000 psi</td>
</tr>
<tr>
<td>Elongation</td>
<td>24%</td>
<td>27%</td>
</tr>
<tr>
<td>CVN @ -40°F</td>
<td>78 ft-lbs</td>
<td>70 ft-lbs</td>
</tr>
</tbody>
</table>

FabCO 81K2-C

FabCO 81K2-C is an all-position low alloy flux-cored wire. This high performance 100% CO2 electrode is characterized by a flat bead profile, smooth stable arc and low spatter even when welded out of position. The exceptional mechanical properties and low diffusible hydrogen makes this product well suited for the shipbuilding and offshore oil construction market.

Specifications:
- E81T1-K2 CJ H8 per AWS A5.29/A5.29M
- ASME SFA 5.29, E81T1-K2 CJ H8
- ABS 100% CO2, 3Y, 3YSA

Shielding Gas:
- 100% CO2

Welding Positions:
- Vertical, Overhead, Flat, Horizontal

Standard Diameter:
- .045”, 1/16”

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% CO2</td>
<td>.07</td>
<td>.13</td>
<td>.27</td>
<td>.015</td>
<td>.014</td>
<td>1.67</td>
</tr>
</tbody>
</table>

Typical Mechanical Properties (As Welded):
- Tensile Strength: 87,000 psi (600 MPa)
- Yield Strength: 75,000 psi (538 MPa)
- Elongation % in 2": 27%

Typical Charpy V-notch impact values (SR):
- CVN @ -40°F: 91 ft-lbs

Typical Applications:
- Offshore & Shipbuilding
TM-91K2 / **TRI-MARK**

TM-91K2 offers good weldability together with excellent properties for the semi-automatic and automatic welding of many higher strength steels. Several features combine to reduce the tendency for cracking in highly restrained joints. As compared to most EXXT-1 wire deposits, weld metal diffusible hydrogen content is low. The moderately high strength level is such that the tendency to overlap many base metal yield strengths is minimized. TM-91K2 is thus a good choice for fillet welds on T-1, HY-80, and other quenched and tempered steels. It is also recommended for other high strength steel applications where weld metal with 90,000-110,000 psi tensile strength is appropriate.

Specifications:
- E90T1-K2C per AWS A5.29, ASME SFA 5.29
- Shielding Gas: 100% CO₂, 35 - 50 cfh
- Welding Positions: Flat and horizontal
- Standard Diameter: 1/16", 5/64", 3/32"

Characteristics:
- Good welder appeal. For use on higher strength steels such as A710, HY-80, and A514.
- Lower weld metal hydrogen than most EXXT-1 slag systems.
- Intermediate tensile range helps minimize “overmatching” base plate yield strengths.

TM-991K2 / **TRI-MARK**

TM-991K2 offers an exceptional combination of properties for an all-position wire, good low temperature toughness combined with tensile strength in the 90,000-110,000 psi range. TM-991K2 is designed for welder appeal, with smooth, stable arc action and low spatter levels. The quick-freezing slag is easily removed and bead geometry in all positions is excellent. TM-991K2 is a superior choice for all-position work with many high-strength low alloy steels, such as A514, A710, and HY-80.

Specifications:
- E91T1-K2C H8, E91T1-K2M H8 per AWS A5.29, ASME SFA 5.29
- Shielding Gas: 100% CO₂, 75% Ar/25% CO₂, 35-50 cfh
- Welding Positions: All positions
- Standard Diameters: .045", .052", 1/16"

Characteristics:
- Excellent low temperature toughness.
- Low hydrogen weld metal.
- Less sensitive to higher sulfur contents in base material than acid slag filler metals.
- Can be used for welding several HSLA steels, such as ASTM A710, A514 and HY-80.

TM-95K2 / **TRI-MARK**

TM-95K2 offers good weldability together with excellent properties for the semi-automatic and automatic welding of many higher strength steels. Several features combine to reduce the tendency for cracking in highly restrained joints. As compared to most EXXT-1 wire deposits, weld metal diffusible hydrogen content is low. The moderately high strength level is such that the tendency to overlap many base metal yield strengths is minimized. TM-95K2 is thus a superior choice for fillet welds on T-1, HY-80, and other quenched and tempered steels. It is also recommended for other high strength steel applications where weld metal with 90,000-110,000 psi tensile strength is appropriate.

Specifications:
- E90T1-K2C per AWS A5.29, ASME SFA 5.29
- Shielding Gas: 100% CO₂, 35 - 50 cfh
- Welding Positions: Flat and horizontal
- Standard Diameter: 1/16", 5/64", 3/32"

Characteristics:
- Good welder appeal.
- For use on higher strength steels such as A710, HY-80, and A514.
- Lower weld metal hydrogen than most EXXT-1 slag systems.
- Intermediate tensile range helps minimize “overmatching” base plate yield strengths.
TM-101 / **TRI-MARK**

TM-101 is a multi-purpose flux-cored wire designed for welding of high strength steels such as A514, A710, and similar HSLA and Q&T steels. TM-101 offers exceptional low-temperature impact toughness with tensile strength in the 105,000-115,000 psi range. TM-101 provides excellent welder appeal by offering a smooth stable arc, low spatter, low smoke generation, and smooth bead profile. The quick freezing slag is ideal for high deposition welding while maintaining a flat bead profile. It is recommended for single and multiple pass welding in all positions with 75% Ar/25% CO₂ shielding gas.

Specifications:
- E101T1-GM per AWS A5.29, ASME SFA 5.29
- Shielding Gas: 75% Ar/25% CO₂, 35-50 cfm
- Welding Positions: All positions
- Standard Diameter: .045”, 1/16”
- Characteristics:
 - Superior impact toughness combined with tensile strength in the range of 105,000-115,000 psi.
 - Ideal for welding steels such as A514 (T1), A710, RIVERS A 610, Weldten 610, EQ56, and other HSLA or Q&T grades.
 - Excellent all-position performance.
 - Low spatter.
 - Low diffusible hydrogen.

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Mo</th>
<th>Ni</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>.06</td>
<td>1.60</td>
<td>.38</td>
<td>.011</td>
<td>.011</td>
<td>.01</td>
<td>1.95</td>
<td></td>
</tr>
</tbody>
</table>

Mechanical Properties:
- Tensile Strength: 110,000 psi
- Yield Strength: 102,000 psi
- Elongation: 20%
- CVN @ 0°F: 78 ft-lbs
- CVN @ -20°F: 70 ft-lbs
- CVN @ -40°F: 52 ft-lbs
- CVN @ -60°F: 35 ft-lbs

The above properties were determined with 75% Ar/25% CO₂ shielding gas.

TM-101K3 / **TRI-MARK**

TM-101K3 provides 100,000 psi tensile strength with good impact values. It is intended for both HSLA and quenched and tempered steels on certain applications. TM-101K3 deposits weld metal with low diffusible hydrogen levels, approaching that of the T-5 (basic) wires, making it more resistant to hydrogen-induced cracking. Welder appeal exceeds that of the basic slag wires. It is used for single and multiple pass welding in the flat and horizontal positions using 100% CO₂ shielding gas.

Specifications:
- E100T1-K3C per AWS A5.29, ASME SFA 5.29
- Shielding Gas: 100% CO₂, 35-50 cfm
- Welding Positions: Flat and horizontal
- Standard Diameter: 1/16”, 3/32”
- Characteristics:
 - Can be used to weld steels where a 100,000 psi minimum tensile strength is required.
 - Intended for both HSLA and O+T steels in certain applications.
 - Weld metal diffusible hydrogen levels are nearly as low as an EXXT-5 wire.

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Mo</th>
<th>Ni</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>.05</td>
<td>1.16</td>
<td>.46</td>
<td>.011</td>
<td>.018</td>
<td>.39</td>
<td>1.88</td>
<td>.02</td>
</tr>
</tbody>
</table>

Mechanical Properties:
- Tensile Strength: 102,000 psi
- Yield Strength: 92,000 psi
- Elongation: 22%
- CVN @ 0°F: 38 ft-lbs

The above properties were determined with 100% CO₂ shielding gas.

TM-111K3 / **TRI-MARK**

TM-111K3 is intended for welding those steels where a minimum tensile strength of 110,000 psi is required. These would encompass several of the quench and tempered low alloy steels, such as ASTM A514. Welder appeal is excellent and spatter is low for this type product. Advancements in acid slag technology provide low diffusible hydrogen levels and mechanical properties approaching those of basic slag wires. These are important criteria in minimizing crack sensitivity with such high strength wires.

Specifications:
- E110T1-K3C per AWS A5.29, ASME SFA 5.29
- Shielding Gas: 100% CO₂, 35-50 cfm
- Welding Positions: Flat and horizontal
- Standard Diameter: 1/16”, 5/64”, 3/32”
- Characteristics:
 - Better welder appeal than basic slag wires.
 - Low hydrogen weld metal.
 - Intended to weld steels where a minimum tensile strength of 100,000 psi is required.

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Mo</th>
<th>Ni</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>.05</td>
<td>1.15</td>
<td>.50</td>
<td>.010</td>
<td>.012</td>
<td>.52</td>
<td>2.25</td>
<td>.02</td>
</tr>
</tbody>
</table>

Mechanical Properties:
- Tensile Strength: 113,000 psi
- Yield Strength: 98,000 psi
- Elongation: 21%
- CVN @ 0°F: 44 ft-lbs

The above properties were determined with 100% CO₂ shielding gas.
TM-1101K3-C

TM-1101K3-C offers excellent arc stability and low spatter with CO₂ shielding gas. It also has a fast-freezing slag for all-position welding. These features, along with relatively low diffusible hydrogen levels, excellent slag removal, good impact values and high strength levels, make TM-1101K3-C a superior choice for welding higher-strength steels. It is recommended for single and multiple pass welding in all positions using 100% CO₂ for shielding gas.

Specifications:
E111T1-K3MJ H8 per AWS A5.29, ASME SFA 5.29
ABS to AWS E110T1-K3C

Shielding Gas:
100% CO₂, 35-50 cfm

Welding Positions:
All positions

Standard Diameters:
.045”, .052”, 1/16”

Characteristics:
- Designed for those applications requiring tensile strength above 110,000 psi.
- Good CVN toughness.
- Must be used with CO₂ shielding gas.
- Relatively low diffusible hydrogen levels.
- Better penetration than the mixed gas version.

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Cr</th>
<th>Ni</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>.05</td>
<td>.05</td>
<td>.05</td>
<td>.05</td>
<td>.05</td>
<td>.05</td>
<td>.05</td>
<td>.05</td>
</tr>
</tbody>
</table>

Mechanical Properties:
- Tensile Strength: 117,000 psi
- Yield Strength: 105,000 psi
- Elongation: 22%
- CVN @ 0°F: 50 ft-lbs

The above properties were determined with 100% CO₂ shielding gas.

TM-1101K3-M

TM-1101K3-M offers excellent arc stability and low spatter with 75-80% Ar/20-25% CO₂ mixtures. It also has a fast-freezing slag for all-position welding. These features, along with relatively low diffusible hydrogen levels, excellent slag removal, good impact values and high strength levels, make TM-1101K3-M a superior choice for welding higher-strength steels. It is recommended for single and multiple pass welding in all positions using 75-80% argon/bal CO₂ mixtures for shielding.

Specifications:
E111T1-K3MJ H8 per AWS A5.29, ASME SFA 5.29
ABS to AWS E110T1-K3M

Shielding Gas:
75-80% Ar/bal CO₂, 35-50 cfm

Welding Positions:
All positions

Standard Diameters:
.045”, .052”, 1/16”

Characteristics:
- Designed for those applications requiring tensile strength above 110,000 psi.
- Good CVN toughness.
- Relatively low diffusible hydrogen levels.
- Better penetration than the mixed gas version.

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Cr</th>
<th>Ni</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>.07</td>
<td>.15</td>
<td>.34</td>
<td>.09</td>
<td>.17</td>
<td>.37</td>
<td>.03</td>
<td>.97</td>
</tr>
</tbody>
</table>

Mechanical Properties:
- Tensile Strength: 117,000 psi
- Yield Strength: 105,000 psi
- Elongation: 22%
- CVN @ 0°F: 50 ft-lbs

The above properties were determined with 75% Ar/25% CO₂ shielding gas.

FabCO-110K3-M

FabCo 110K3-M is a gas-shielded tubular wire, which is especially designed for welding of high strength low alloy steels in offshore structure fabrication. Quenched and tempered steels, such as Grade N25 or Dillimax 690, usually require tensile strength above 115 ksi and -40°F Charpy Impact properties. This product can consistently meet those requirements in all welding positions. FabCO 110K3-M uses 75% Ar/25% CO₂ mixed gas and offers high productivity along with good welder appeal.

Specifications:
AWS A5.29, E111T1-K3MJ H4, ASME SFA 5.29, E111T1-K3MJ H4
ABS 75% Ar/25% CO₂, E111T1-K3MJ H4

Shielding Gas:
75% Ar/25% CO₂

Welding Positions:
All positions

Applications:
Offshore structural fabrication, quenched and tempered steels.

Standard Diameters: .045

Type Of Current:
DCEP
TM-115 / TRI-MARK
TM-115 is designed for welding high strength, low alloy steels, and quenched and tempered steels where high quality welds are needed. The wire is produced with a basic slag system which greatly benefits both deposit quality and properties. Welds combine tensile strength in the 110,000-130,000 psi range with excellent low temperature toughness. The weld metal is low in hydrogen and highly resistant to cracking in thicker sectioned or highly restrained joints. TM-115 is commonly used in applications involving A514, A517, and many similar higher strength low alloy steels. It is recommended for single and multiple pass welding in the flat and horizontal positions using 100% CO₂ or 75% Ar/25% CO₂ shielding gas.

Specifications:
E110T5-K3C, A5.29, A517, E110T5-K3M per AWS A5.29, SFA 5.29
Shielding Gas:
100% CO₂, 75% Ar/25% CO₂, 55-50 cfh
Welding Positions:
Flat and horizontal
Standard Diameter:
.045"
Type Of Current:
DCEP

Mechanical Properties:
100% CO₂
Tensile Strength: 112,000 psi (869 MPa)
Yield Strength: 98,000 psi (701 MPa)
Elongation % in 2": 22%
CVN @ -60°F: 57 ft-lbs

Applications:
Mining equipment, earthmoving equipment and off-the-road vehicles.

FabCO 115 / HOBART
FabCO 115 is a high-strength, flux-cored wire that is comparable to a low alloy E11018M electrode but with higher deposition rates. It is used primarily for welding A514, A517, HY100 and similar quenched and tempered high-strength, low alloy steels, producing a low hydrogen deposit with basic slag which helps to minimize cracking. FabCO 115 has high impact values at low temperatures and provides you with a modified globular metal transfer. For use with 100% CO₂ shielding gas only.

Specifications:
E110T5-K4C, A5.29, E110T5-K4C per AWS A5.29, SFA 5.29
Shielding Gas:
100% CO₂
Welding Positions:
Flat and horizontal
Standard Diameter:
.045"
Type Of Current:
DCEP

Typical Weld Metal Properties*(Chem Pad):
C Mn Si P S Cr Ni Mo
100% CO₂ .04 1.50 .41 .012 .014 .42 2.37 .42
Mechanical Properties:
100% CO₂
Tensile Strength: 126,000 psi (869 MPa)
Yield Strength: 102,000 psi (701 MPa)
Elongation % in 2": 18%
CVN @ -60°F (-51°C): 48 ft-lbs (65 Joules)

Applications:
Mining equipment, earthmoving equipment and off-the-road vehicles.

TM-125K4 / TRI-MARK
TM-125K4 is designed for welding high-strength steels, including many of the quenched and tempered low alloy grades. It is an excellent choice for applications requiring good impact values at low temperatures, combining high tensile strengths with good Charpy V-notch impact values down to -60°F. Its basic slag formulation promotes resistance to weld cracking and produces low diffusible hydrogen levels in the weld. TM-125K4 is also a good wire for casting repair, offering high deposition rates and high efficiency. It is recommended for single and multiple pass welding in the flat and horizontal positions using 100% CO₂ shielding gas.

Specifications:
E120T5-K4C H4 per AWS A5.29, SFA 5.29
Shielding Gas:
100% CO₂, 35-50 cfh
Welding Positions:
Flat and horizontal
Standard Diameter:
1/16", 5/64", 3/32"
Characteristics:
- Designed for semi-automatic and automatic welding of high strength steels where minimum tensile of 120,000 psi is required.
- Recommended for single or multiple pass applications in flat and horizontal using CO₂ shielding gas.

Undiluted Weld Metal Chemistry:
C Mn Si P S Mo Cr Ni V
100% CO₂ .07 1.88 .42 .016 .016 .52 2.13 .01
Mechanical Properties:
Tensile Strength: 133,000 psi
Yield Strength: 118,000 psi
Elongation: 20%
CVN @ -60°F: 26 ft-lbs

Applications:
The above properties were determined with 100% CO₂ shielding gas.
METALLOY 90 / TRI-MARK

Metalloy 90 is a metal-cored wire designed for welding high-strength steels, particularly those requiring high toughness at sub-zero temperatures. Ideal for castings, pressure vessels and other applications associated with building ships and offshore platforms, Metalloy 90 can be used for both single and multiple pass welding with 75% Ar/25% CO₂ shielding gas.

Specifications:
E90C-K3 per AWS A5.28

Shielding Gas:
75% Ar/25% CO₂, 35-50 cfh

Welding Positions:
CV Spray—flat, horizontal, vertical down
Pulse and Short Arc—all positions

Standard Diameters:
.045", 1/16"

Characteristics:
• Suitable for welding high strength low alloy steels.
• Single or multiple pass welding.
• Higher deposition rates compared to solid wire.
• High CVN at sub-zero temperatures.

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>Ni</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>.03</td>
<td>1.27</td>
<td>.30</td>
<td>1.83</td>
<td>.38</td>
</tr>
</tbody>
</table>

Mechanical Properties:
Tensile Strength: 97,000 psi
Yield Strength: 91,000 psi
Elongation: 23%
CVN @ -60°F: 41 ft-lbs

The above properties were determined with 75% Ar/25% CO₂ shielding gas.

METALLOY 100 / TRI-MARK

Metalloy 100 is a low alloy steel metal-cored welding electrode designed to produce weld metal with a minimum of 100 ksi tensile strength. In addition to high tensile strength, the weld metal has excellent low temperature toughness to -60°C. Metalloy 100 produces these properties over a wide heat input range. Like most metal-cored wires, Metalloy 100 has low diffusible hydrogen levels below 4 ml/100g.

Specifications:
E100C-K3 per AWS A5.28

Shielding Gas:
90% Ar/10% CO₂ and 95% Ar/5% CO₂, 35-50 cfh

Welding Positions:
CV Spray—flat, horizontal, vertical down
Pulse and Short Arc—all positions

Standard Diameters:
.045", 1/16"

Characteristics:
• Single- or multiple-pass welding of high strength low alloy steels, such as A514, A517, T-1, HY-80, HSLA A80, A710 and many others.
• Higher deposition rates compared to solid wire.
• Designed for Ar/CO₂ shielding gas mixtures containing up to 10% CO₂.
• Shielding gas mixtures containing more than 10% CO₂ may be used but will result in tensile strength below 100 ksi.

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>Ni</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>.07</td>
<td>1.50</td>
<td>.38</td>
<td>1.58</td>
<td>.34</td>
</tr>
</tbody>
</table>

Mechanical Properties:
Tensile Strength: 113,300 psi
Yield Strength: 103,300 psi
Elongation: 21%
CVN @ -60°F: 49 ft-lbs

The above properties were determined with 75% Ar/25% CO₂ shielding gas.

METALLOY 110 / TRI-MARK

Metalloy 110 is a metal-cored, gas-shielded wire that’s designed for the single and multiple pass welding of quenched and tempered steels including T1-type, HY80 and HY100. For use with 75% Ar/25% CO₂, it is also highly recommended for welding high-strength steels. Metalloy 110 can be used for welding castings, heavy equipment, and shipbuilding projects.

Specifications:
E110C-K4 AWS A5.28
CWb E110C-G H4

Shielding Gas:
75% Ar/25% CO₂*, 35-50 cfh

Welding Positions:
CV Spray—flat, horizontal, vertical down
Pulse and Short Arc—all positions

Standard Diameters:
.045", 1/16"

Characteristics:
• Single or multiple pass welding of high strength low alloy steels.
• Higher deposition rates compared to solid wire.
• Recommended for welding quenched and tempered HSLA steels.

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>.07</td>
<td>1.63</td>
<td>.48</td>
<td>2.22</td>
<td>.21</td>
<td>.59</td>
</tr>
</tbody>
</table>

Mechanical Properties:
Tensile Strength: 119,900 psi
Yield Strength: 109,200 psi
Elongation: 22%
CVN @ -60°F: 39 ft-lbs

The above properties were determined with 75% Ar/25% CO₂ shielding gas.

* Other shielding gas may be used, but must be agreed upon by supplier and purchaser.
Description
Military similar electrodes designed for welding high strength steels such as HY80, HY100, A514 (T1).

Typical Applications
Designed for welding HY-80, HY-90, and HY-100 steels, forgings castings, pressure vessels.

HOBALLOY® 9018M / HOBART®
AWS E9018-M H4R
Hoballoy 9018M is an outstanding electrode that's designed for applications requiring tensile strengths of at least 90,000 psi. An ideal choice for conditions of high heat and humidity; Hoballoy 9018M has a specially formulated coating that reduces moisture pick-up, which helps to minimize hydrogen cracking and starting porosity.

Typical applications:
- joining HY-90 steel
- joining HY-80 steel
- joining T-1 steel
- joining other high-tensile steels

Typical weld metal properties (Chem Pad):

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>.05</td>
<td>1.06</td>
<td>.22</td>
<td>.011</td>
<td>.010</td>
<td>1.55</td>
<td>.08</td>
<td>.29</td>
<td>.01</td>
</tr>
</tbody>
</table>

Typical mechanical properties (AW):
- Tensile Strength (psi): 90,000 (665 MPa)
- Yield Strength (psi): 83,000 (575 MPa)
- Elongation % in 2": 26%

Typical Charpy V-notch impact values (AW):
- Avg. at -60°F (-51°C): 65 ft-lbs (88 Joules)

Available diameter and recommended operating ranges:
- 3/32" (2.4 mm): 70-110 amps
- 1/8" (3.2 mm): 90-160 amps
- 5/32" (4.0 mm): 130-220 amps
- 3/16" (4.8 mm): 200-300 amps
- 1/4" (6.4 mm): 300-400 amps

Type of current: DCEP or AC

Approvals and conformance:
- AWS A5.5, E9018-M H4R
- ASME SFA 5.5, E9018-M H4R
- ABS E9018-M
HOBALLOY® 10018M / HOBART®
AWS E10018-M H4R
Designed for welding low alloy, high-strength steels, the HOBALLOY® 10018M provides good ductility and excellent notch toughness. Its good arc characteristics, easy slag removal, and low spatter and smoke combine for operator appeal. And it’s also ideal in high heat and humidity because of its moisture-resistant coating, which also helps to prevent hydrogen cracking and starting porosity.

Typical applications:
• low alloy steels including HY-80, HY-90 and T-1

Typical weld metal properties (Chem Pad):
<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
<th>Mo</th>
<th>Cr</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>.07</td>
<td>1.44</td>
<td>.012</td>
<td>.007</td>
<td>.40</td>
<td>.04</td>
<td>1.89</td>
<td>.38</td>
<td>.01</td>
</tr>
</tbody>
</table>

Typical mechanical properties (AW):
Tensile Strength (psi) 108,000 (947 MPa)
Yield Strength (psi) 100,000 (687 MPa)
Elongation % in 2" 23%

Typical Charpy V-notch impact values (AW):
Avg. at -60°F (-51°C) 56 ft-lbs (76 Joules)

Available diameter and recommended operating ranges:
3/32" (2.4 mm) 70-110 amps
1/8" (3.2 mm) 90-160 amps
5/32" (4.0 mm) 130-220 amps

Type of current: DCEP

Approvals and conformances:
• AWS A5.5, E10018-M H4R
• ASME SFA5.5, F-4, A-12
• ABS E10018M

HOBALLOY® 11018M / HOBART®
AWS E11018-M H4R
Designed for military applications and other projects that require weld joints with tensile strengths of at least 110,000 psi, HOBALLOY® 11018M offers a wide range of welding advantages that will improve your welding productivity – good arc characteristics, excellent puddle control with good wetting action and tie-in, and easy slag removal. Ideal for conditions of high heat and humidity, it features a special coating that’s designed to reduce moisture pick-up, helping to minimize hydrogen cracking and starting porosity. HOBALLOY® 11018M also offers good ductility, good crack resistance and high notch toughness even at temperatures as low as -60°F.

Typical applications:
• low alloy steels
• forgings
• castings
• plate and pressure vessels

Typical weld metal properties (Chem Pad):
<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
<th>Mo</th>
<th>Cr</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>.04</td>
<td>1.54</td>
<td>.34</td>
<td>1.90</td>
<td>.013</td>
<td>.33</td>
<td>.19</td>
<td><.01</td>
<td></td>
</tr>
</tbody>
</table>

Typical mechanical properties (AW):
Tensile Strength (psi) 112,000 (771 MPa)
Yield Strength (psi) 102,000 (703 MPa)
Elongation % in 2" 22%

Typical Charpy V-notch impact values (AW):
Avg. at -60°F (-51°C) 54 ft-lbs (74 Joules)

Available diameter and recommended operating ranges:
3/32" (2.4 mm) 75-115 amps
1/8" (3.2 mm) 90-160 amps
5/32" (4.0 mm) 130-220 amps
3/16" (4.8 mm) 200-300 amps
1/4" (6.4 mm) 300-400 amps

Type of current: DCEP or AC

Approvals and conformances:
• AWS A5.5, E11018-M H4R
• ASME SFA5.5, F-4, A-10, E11018-M
• ABS E11018M
• MIL-E-222001, (1/8)
B

Description
B2 1.25% Chrome - .5% Molybdenum for high temperature service.
B3 2.25% Chrome - 1.0% Molybdenum for high temperature service applications
B6 4-6% Chrome - .50% Molybdenum for high temperature service applications
B8 8-10.50% Chrome - 1.0% Molybdenum for high temperature service applications
B9 8-10.50% Chrome - 1.0% Molybdenum for high temperature service applications

Typical Applications
B2 Used for welding P11 Chrome-Moly pipe.
B3 Typically used for welding P21 and P22 Chrome-Moly pipe
B6 Used for welding 5% Chrome .50 Moly pipe and steels.
B8 Used for welding P91 and P92 Chrome-Moly pipe.
B9 Used for welding P91 and P92 Chrome-Moly pipe.

HOBALLOY® 8018B2 / HOBART® E8018-B2 H4R
Hoballoy 8018B2 is an outstanding electrode for welding higher strength steels requiring tensile strengths of 80,000 lbs. or more. Ideal for welding in conditions of high heat or humidity, it features a specially formulated coating that’s designed to reduce moisture pick-up and thus help keep hydrogen cracking and starting porosity to a minimum.

Typical applications:
• fabrication and maintenance of boilers and associated piping
• steels such as 1-1/4 Cr–1/2 Mo and 1/2 Cr–1/2 Mo

Typical weld metal properties (Chem Pad):

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Cr</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>.07</td>
<td>.73</td>
<td>.61</td>
<td>.010</td>
<td>.010</td>
<td>1.33</td>
<td>.55</td>
</tr>
</tbody>
</table>

Typical mechanical properties (stress relieve 1 hour @ 1275°F):
Tensile Strength (psi) 103,000 (710 MPa)
Yield Strength (psi) 90,000 (621 MPa)
Elongation % in 2” 25%

Typical Charpy V-notch impact values
Not required

Available diameter and recommended operating ranges:

<table>
<thead>
<tr>
<th>Type</th>
<th>Diameter</th>
<th>Current Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/32”</td>
<td>.000”</td>
<td></td>
</tr>
<tr>
<td>1/8”</td>
<td>.093”</td>
<td>70-110 amps</td>
</tr>
<tr>
<td>5/32”</td>
<td>.016”</td>
<td>90-160 amps</td>
</tr>
<tr>
<td>3/16”</td>
<td>.125”</td>
<td>130-220 amps</td>
</tr>
</tbody>
</table>

Type of current: DCEP or AC

Approvals and conformance:

• AWS A5.5, E8018-B2 H4R
• ASME SFA 5.5, F-4, A-3, E8018-B2
• ABS E8018-B2
HOBALLOY® 8018B2L / HOBART
AWS E8018-B2L H4R/E7018-B2L H4R
Hoballoy 8018B2L is an outstanding electrode for welding higher strength steels requiring tensile strengths of 80,000 lbs. or more. Low carbon levels reduce the possibility of cracking in the weldment. It offers good arc characteristics and excellent notch toughness. Plus, Hoballoy 8018B2L features a specially formulated coating that reduces moisture pick-up, making it ideal for welding in conditions of high heat and humidity and helps to minimize hydrogen cracking and starting porosity.

Typical applications:
• fabrication and maintenance of boilers and associated piping
• steels such as 1-1/4 Cr–1/2 Mo and 1/2 Cr–1/2 Mo

Typical weld metal properties (Chem Pad):

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Cr</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>.03</td>
<td>.58</td>
<td>.53</td>
<td>.012</td>
<td>.010</td>
<td>1.35</td>
<td>.59</td>
</tr>
</tbody>
</table>

Typical mechanical properties (stress relieve 1 hour @ 1275°F):
- Tensile Strength (psi) 90,000 (624 MPa)
- Yield Strength (psi) 76,000 (521 MPa)
- Elongation % in 2" 24%

Typical Charpy V-notch impact values
Not required

Available diameter and recommended operating ranges:
3/32" (2.4 mm) 70-110 amps
1/8" (3.2 mm) 90-160 amps
5/32" (4.0 mm) 130-220 amps
3/16" (4.8 mm) 200-300 amps
1/4" (6.4 mm) 300-400 amps

Type of current: DCEP or AC

Approvals and conformances:
• AWS A5.5-B1, E8018-B2L H4R
• AWS A5.5, E7018-B2L H4R
• ASME SFA 5.5, F-4, A-4, E9018-B2L
• ABS E9018-B2L

HOBALLOY® 9018B3 / HOBART
AWS E9018-B3 H4R
Hobart’s Hoballoy 9018B3 is an outstanding electrode that’s designed for welding higher strength steel applications. It offers better corrosion resistance than carbon electrodes and features a special coating that’s formulated to reduce moisture pick-up, helping to minimize hydrogen cracking and starting porosity.

Typical applications:
• chrome-moly pipes
• castings
• forgings
• boiler work

Typical weld metal properties (Chem Pad):

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Cr</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>.10</td>
<td>.69</td>
<td>.50</td>
<td>.01</td>
<td>.01</td>
<td>2.35</td>
<td>1.06</td>
</tr>
</tbody>
</table>

Typical mechanical properties (stress relieve 1 hour @ 1275°F):
- Tensile Strength (psi) 125,000 (865 MPa)
- Yield Strength (psi) 111,000 (765 MPa)
- Elongation % in 2" 18%

Typical Charpy V-notch impact values
Not required

Available diameter and recommended operating ranges:
3/32" (2.4 mm) 70-110 amps
1/8" (3.2 mm) 90-160 amps
5/32" (4.0 mm) 130-220 amps
3/16" (4.8 mm) 200-300 amps

Type of current: DCEP or AC

Approvals and conformances:
• AWS A5.5, E9018-B3 H4R
• ASME SFA 5.5, F-4, A-4, E9018-B3 H4R
• ABS E9018-B3

HOBALLOY® 8018B3L / HOBART
AWS E9018-B3L H4R/E8018-B3L H4R
Hoballoy 9018B3L is an outstanding electrode for welding higher-strength piping where cracking is a problem. It features a coating that’s specially formulated to reduce moisture pick-up, which makes it ideal for conditions of high heat and humidity and for minimizing hydrogen cracking and starting porosity.

Typical applications:
• chrome-moly pipes
• boiler work

Typical weld metal properties (Chem Pad):

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Cr</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>.04</td>
<td>.65</td>
<td>.48</td>
<td>.01</td>
<td>.01</td>
<td>2.33</td>
<td>1.10</td>
</tr>
</tbody>
</table>

Typical mechanical properties (stress relieve 1 hour @ 1275°F):
- Tensile Strength (psi) 104,000 (719 MPa)
- Yield Strength (psi) 89,000 (616 MPa)
- Elongation % in 2" 20%

Typical Charpy V-notch impact values
Not required

Available diameter and recommended operating ranges:
3/32" (2.4 mm) 70-110 amps
1/8" (3.2 mm) 90-160 amps
5/32" (4.0 mm) 130-220 amps
3/16" (4.8 mm) 200-300 amps
1/4" (6.4 mm) 300-400 amps

Type of current: DCEP or AC

Approvals and conformances:
• AWS A5.5-81, E9018-B3L H4R
• AWS A5.5-96, E8018-B3L H4R
• ASME SFA 5.5, F-4, A-4, E9018-B3L
• ABS E9018-B3L
HOBALLOY® 8018B6 / HOBART
AWS E8018-B6 H4R
The Hoballoy 8018B6 is the right choice for 5% Cr, 1/2% Mo steels and other chromium-molybdenum steels in severe service conditions. Its special coating reduces moisture pick-up, minimizing hydrogen cracking and starting porosity. Plus, it offers excellent arc characteristics for a stable, easy-to-control arc and its quick slag removal means faster clean-up time.

Typical applications:
- Petrochemical and petroleum industries
- Tubes and tube sheets
- Plate steels
- High pressure hydrogen service

Typical weld metal properties (Chem Pad):

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Si</th>
<th>Cr</th>
<th>Ni</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>.06</td>
<td>.60</td>
<td>.01</td>
<td>.01</td>
<td>.23</td>
<td>4.60</td>
<td>.10</td>
<td>.46</td>
</tr>
</tbody>
</table>

Typical mechanical properties (stress relieve 1 hour @ 1375°F):
- Tensile Strength (psi) 89,000 (614 MPa)
- Yield Strength (psi) 73,000 (505 MPa)
- Elongation % in 2" 23%

Typical Charpy V-notch impact values
Not required

Available diameter and recommended operating ranges:
- 3/32" (2.4 mm) 70-110 amps
- 1/8" (3.2 mm) 90-160 amps
- 5/32" (4.0 mm) 130-210 amps
- 3/16" (4.8 mm) 200-290 amps

Type of current: DCEP

Approvals and conformances:
- AWS A5.5, E8018-B6 H4R
- ABS E8018-B6
- ASME SFA 5.5 F-4, A-4

HOBALLOY® 8018B8 / HOBART
AWS E8018-B8 H4R
Whenever you face severe service conditions, the Hoballoy 8018B8 is the perfect electrode choice. Designed for joining creep-resistant, high chromium (9% Cr) alloys of similar composition, its iron powder low-hydrogen coating reduces moisture pick-up and helps to minimize hydrogen cracking and starting porosity. It also offers a stable, easy-to-control arc and improved bead appearance.

Typical applications:
- Petrochemical and petroleum industries
- Tubes, tube sheets and plate steels for high pressure hydrogen service
- 9% Cr and 1% Mo steels

Typical weld metal properties (Chem Pad):

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Si</th>
<th>Cr</th>
<th>Ni</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>.05</td>
<td>.74</td>
<td>.02</td>
<td>.008</td>
<td>.31</td>
<td>8.97</td>
<td>.09</td>
<td>.94</td>
</tr>
</tbody>
</table>

Typical mechanical properties (stress relieve 1 hour @ 1375°F):
- Tensile Strength (psi) 100,000 (689 MPa)
- Yield Strength (psi) 79,000 (547 MPa)
- Elongation % in 2" 23%

Typical Charpy V-notch impact values
Not required

Available diameter and recommended operating ranges:
- 3/32" (2.4 mm) 70-110 amps
- 1/8" (3.2 mm) 90-160 amps
- 5/32" (4.0 mm) 130-210 amps
- 3/16" (4.8 mm) 200-300 amps

Type of current: DCEP

Approvals and conformances:
- AWS A5.5, E8018-B8 H4R
- ABS E8018-B8
- ASME SFA 5.5 F-4, A-5

HOBALLOY® 9015B9 / HOBART
AWS E9015-B9 H4R
The improved creep resistance of the Hoballoy 9015B9 makes it an outstanding electrode for power generation and high temperature service applications. It features low moisture reabsorption that prevents starting porosity and offers resistance to hydrogen-induced cracking. Plus, it’s quick and easy slag removal makes clean-up faster than ever.

Typical applications:
- Petrochemical and petroleum industries
- High temperature service applications
- Tubes, tube sheets
- Pipe and plate steels
- 9% Cr - 1% Mo-V steels

Typical weld metal properties (Chem Pad):

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Si</th>
<th>Cu</th>
<th>Cr</th>
<th>V</th>
<th>Ni</th>
<th>Mo</th>
<th>Al</th>
<th>Nb</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>.09</td>
<td>.41</td>
<td>.01</td>
<td>.01</td>
<td>.20</td>
<td>.14</td>
<td>8.50</td>
<td>.18</td>
<td>.57</td>
<td>.91</td>
<td>.01</td>
<td>.03</td>
<td>.04</td>
</tr>
</tbody>
</table>

Typical mechanical properties (stress relieve 1 hour @ 1375°F):
- Tensile Strength (psi) 105,000 (724 MPa)
- Yield Strength (psi) 90,000 (620 MPa)
- Elongation % in 2" 21%

Typical Charpy V-notch impact values
Not required

Available diameter and recommended operating ranges:
- 3/32" (2.4 mm) 70-100 amps
- 1/8" (3.2 mm) 90-140 amps
- 5/32" (4.0 mm) 120-210 amps
- 3/16" (4.8 mm) 200-300 amps

Approvals and conformances:
- AWS A5.5, E9015-B9 H4R
- ASME SFA 5.5 F-4, A-5
TM-81B2 / TRI-MARK

TM-81B2 deposits weld metal similar to the chemistry found in 1-1/4 Cr/1/2 Mo steels. It is used to weld steels that must maintain high tensile strengths when subject to high service temperatures and also where creep resistance is required. TM-81B2 would make a good replacement for E8018-B2 electrodes when productivity is a major consideration. It is recommended for single and multiple pass welding in the flat and horizontal positions, using 100% CO₂ shielding gas.

Specifications:
E80T1-B2C, per AWS A5.29, ASME SFA 5.29

Shielding Gas:
100% CO₂, 35-50 ccf

Welding Positions:
Flat and horizontal

Standard Diameter:
1/16”, 3/32"

Characteristics:
- Intended for welding Cr-Mo steels containing 1-1/4 Cr/1/2 Mo.
- Excellent welder appeal, with low spatter levels.
- Can be used for those weldments requiring some creep resistance.

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Mo</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% CO₂</td>
<td>.06</td>
<td>.70</td>
<td>.29</td>
<td>.011</td>
<td>.015</td>
<td>.43</td>
<td>1.33</td>
</tr>
</tbody>
</table>

Mechanical Properties:

<table>
<thead>
<tr>
<th></th>
<th>Tensile Strength</th>
<th>Yield Strength</th>
<th>Elongation</th>
<th>CVN</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% CO₂</td>
<td>99,000 psi</td>
<td>87,000 psi</td>
<td>21%</td>
<td>not required</td>
</tr>
<tr>
<td>75% Ar/25% CO₂</td>
<td>110,600 psi**</td>
<td>99,600 psi**</td>
<td>19%</td>
<td>not required</td>
</tr>
</tbody>
</table>

The above properties were determined with 100% CO₂ shielding gas.

Stress Relieved 1 hr. @ 1275°F

TM-811B2 / TRI-MARK

TM-811B2 deposits weld metal similar to the chemistry found in 1-1/4 Cr/1/2 Mo steels. It is used to weld steels that must maintain high tensile strengths when subject to high service temperatures and also where creep resistance is required. The excellent all-position characteristics make this a good replacement for E8018-B2 electrodes. It is recommended for single and multiple pass welding in all positions, using 100% CO₂ shielding gas.

Specifications:
E81T1-B2C H4, E81T1-B2M H4 per AWS A5.29, ASME SFA 5.29
CW6 E811T1-B2

Shielding Gas:
100% CO₂, 75% Ar/25% CO₂, 35-50 ccf

Welding Positions:
All positions

Standard Diameter:
.045", .052", 1/16"

Characteristics:
- Adaptable to Cr-Mo pipe welding.
- Can be used on Cr-Mo steels where creep resistance is required.
- Excellent all-position characteristics make this a good replacement for E8018-B2 electrodes.
- Ar/CO₂ gas shielding may be used but tensile strength may exceed 100,000 psi.

Undiluted Weld Metal Chemistry*:

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Mo</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>98% Ar/2% O₂</td>
<td>.07</td>
<td>.78</td>
<td>.42</td>
<td>1.25</td>
<td>.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75% Ar/25% CO₂</td>
<td>.06</td>
<td>.82</td>
<td>.29</td>
<td>1.36</td>
<td>.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mechanical Properties:

<table>
<thead>
<tr>
<th></th>
<th>Tensile Strength</th>
<th>Yield Strength</th>
<th>Elongation</th>
<th>CVN</th>
</tr>
</thead>
<tbody>
<tr>
<td>98% Ar/2% O₂</td>
<td>96,000 psi*</td>
<td>84,000 psi</td>
<td>23%</td>
<td>not required</td>
</tr>
<tr>
<td>75% Ar/25% CO₂</td>
<td>110,600 psi**</td>
<td>99,600 psi**</td>
<td>19%</td>
<td>not required</td>
</tr>
</tbody>
</table>

* Determines with 100% CO₂ shielding gas.
** Stress relieved 1 hr. @ 1275°F.

METALLOY 80B2 / TRI-MARK

Metalloy 80B2 is a gas-shielded metal-cored wire that's designed for the single or multiple pass welding of chrome-moly steels. Designed for use with 98% Ar/2% O₂ or 75% Ar/25% CO₂ shielding gas, Metalloy 80B2 is used for welding castings and equipment.

Specifications:
E80C-B2 per AWS A5.28

Shielding Gas:
98% Ar/2% O₂, 75% Ar/25% CO₂, 35-50 ccf

Welding Positions:
CV Spray—flat, horizontal, vertical down Pulse and Short Arc—all positions

Standard Diameters:
.045"

Characteristics:
- Suitable for welding 1/2 Cr/1/2 Mo, 1 Cr/1/4 Mo and 1-1/4 Cr/1/2 Mo steels.
- Single or multiple pass welding.

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>Cr</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>98% Ar/2% O₂</td>
<td>.07</td>
<td>.78</td>
<td>.42</td>
<td>1.25</td>
<td>.47</td>
</tr>
<tr>
<td>75% Ar/25% CO₂</td>
<td>.06</td>
<td>.82</td>
<td>.29</td>
<td>1.36</td>
<td>.50</td>
</tr>
</tbody>
</table>

Mechanical Properties:

<table>
<thead>
<tr>
<th></th>
<th>Tensile Strength</th>
<th>Yield Strength</th>
<th>Elongation</th>
<th>CVN</th>
</tr>
</thead>
<tbody>
<tr>
<td>98% Ar/2% O₂</td>
<td>96,900 psi*</td>
<td>83,700 psi</td>
<td>22.5%</td>
<td>not required</td>
</tr>
<tr>
<td>75% Ar/25% CO₂</td>
<td>110,600 psi**</td>
<td>99,600 psi**</td>
<td>23%</td>
<td>not required</td>
</tr>
</tbody>
</table>

* Stress relieved 1 hr. @ 1150°F.
TM-91B3 / TRI-MARK

TM-91B3 is intended for welding applications involving 2-1/4 Cr/1 Mo steels, such as those found in steam or chemical piping systems where elevated temperature conditions prevail. Weld contents match the base metal chromium and molybdenum levels, providing high temperature creep resistance and some oxidation resistance. In suitable applications, TM-91B3 replaces the AWS A5.5 E9018-B3 covered electrode, and provides similar weld metal chemistry. In addition to the economic advantages of semi-automatic welding, TM-91B3 offers excellent welder appeal and good bead geometry. TM-91B3 is recommended for single and multiple pass welding in the flat and horizontal positions with 100% CO₂ shielding gas.

Specifications:

| E90T1-B3C per AWS A5.29, ASME SFA 5.29 |

Shielding Gas:

100% CO₂, 35-50 ccf

Welding Positions:

Flat and horizontal

Standard Diameter:

1/16", 3/32"*

Characteristics:

- Excellent welder appeal with good bead geometry.
- Intended for 2-1/4 Cr/1 Mo applications, such as steam or chemical piping systems.
- Very good creep resistance.

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Mo</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% CO₂</td>
<td>.06</td>
<td>.04</td>
<td>.25</td>
<td>.010</td>
<td>.013</td>
<td>1.06</td>
</tr>
<tr>
<td>75% Ar/25% CO₂</td>
<td>.06</td>
<td>.70</td>
<td>.38</td>
<td>.010</td>
<td>.011</td>
<td>.97</td>
</tr>
</tbody>
</table>

Mechanical Properties:

- Tensile Strength: 106,000 psi
- Yield Strength: 93,000 psi
- Elongation: 19%
- CVN: not required

* Stress relieved 1 hr. @ 1275°F

TM-111B3 / TRI-MARK

TM-111B3 provides 2-1/4% chromium/1% molybdenum steel weld metal in combination with excellent welder appeal. Bead geometry is good in all positions. TM-111B3 is recommended for the welding of 2-1/4% chromium/1% molybdenum steels, specifically ASTM A387, Grades 21 and 22, which are normally used in applications requiring creep resistance at elevated temperatures. TM-111B3 also provides some corrosion resistance. The wire is recommended for single and multiple pass welding in all positions using 100% CO₂ or 80% Ar/20% CO₂ shielding gas.

Specifications:

| E91T1-B3C H4, E91T1-B3M H4 per AWS A5.29, ASME SFA 5.29 |

Shielding Gas:

100% CO₂, 35-50 ccf

Welding Positions:

All positions

Standard Diameters:

.045", .052", 1/16"

Characteristics:

- Provides weld metal with a 2-1/4 Cr/1 Mo composition.
- Intended for applications requiring creep resistance at elevated temperatures, such as pressure piping.
- Argon/CO₂ gas shielding may be used but tensile strength may exceed 110,000 psi.

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Mo</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% CO₂</td>
<td>.05</td>
<td>.64</td>
<td>.27</td>
<td>.011</td>
<td>.013</td>
<td>.93</td>
</tr>
<tr>
<td>75% Ar/25% CO₂</td>
<td>.06</td>
<td>.70</td>
<td>.38</td>
<td>.010</td>
<td>.011</td>
<td>.97</td>
</tr>
</tbody>
</table>

Mechanical Properties:

- Tensile Strength: 100,000 psi
- Yield Strength: 86,000 psi
- Elongation: 20%
- CVN: not required

* Stress relieved 1 hr. @ 1275°F

TM-95B3 / TRI-MARK

TM-95B3 has been designed to match the chemistry for 2-1/4% chromium – 1% molybdenum steels. The wire uses a basic slag which greatly improves mechanical properties. This is proven by providing an impact property of 45 ft-lbs at -20°F for a chrome-moly product! In addition, the weld produces low hydrogen weld deposits (<4ml/100g). TM-95B3 is recommended for the welding of 2-1/4% chromium – 1% molybdenum steel specifically ASTM A387, Grade 21 and 22, which are typically used in applications where creep resistance is required at elevated temperatures. TM-95B3 is designed to provide temper embrittlement resistance by providing an X-bar factor less than 15. The wire is recommended for single or multiple pass welding at a flat or horizontal position with a 75-80% Ar/bal CO₂ shielding gas.

Specifications:

| E90T5M-B3 H4 per AWS A5.29, ASME SFA 5.29, T5-B3M (E90T5-B3M) |

Shielding Gas:

75-80% Ar/bal CO₂, 35-50 ccf

Welding Positions:

Flat and horizontal

Standard Diameters:

1/16"

Characteristics:

- Excellent low temperature toughness and stress-relieved impact toughness
- Low hydrogen weld metal – H4.
- Excellent for welding 2.25 Cr – 1.0 Mo steels.
- X-bar value less than 15

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Mo</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>.08</td>
<td>1.09</td>
<td>.28</td>
<td>.007</td>
<td>.010</td>
<td>.31</td>
<td>.38</td>
</tr>
<tr>
<td>.34</td>
<td>2.30</td>
<td>.01</td>
<td><.0010</td>
<td><.0003</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mechanical Properties:

- Tensile Strength: 98,100 psi (675 MPa)
- Yield Strength: 82,300 psi (566 MPa)
- Elongation: 21.0%
- CVN @ -23°F (-30.6°C): 50.4 ft-lbs (68.3 Joules)
TM-B6 / TRI-MARK

TM-B6 is designed for welding 5% Chromium – .50% Molybdenum steels which are used in high temperature and pressure applications in the power generation and petroleum industries. The chemistry allows for matching of the base materials to keep the properties even after pre-weld and post-weld heat treat cycles. Designed for 75% Argon – 25% CO₂ shielding gas, this all position gas shielded flux cored wire offers low spatter with X-Ray quality welds.

Specifications:
E81T1-B6C per AWS A5.29, ASME SFA 5.29

Shielding Gas:
100% CO₂, 35-50 C.F.H.

Welding Positions:
All positions

Standard Diameters:
.045*

Characteristics:
- Fast freezing slag for out-of-position welding.
- Low spatter level.
- X-ray quality weld.

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Cr</th>
<th>Ni</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>.05</td>
<td>.29</td>
<td>.36</td>
<td>.007</td>
<td>.011</td>
<td>4.45</td>
<td>.05</td>
<td>.48</td>
</tr>
</tbody>
</table>

Mechanical Properties:

- **Tensile Strength:** 94,000 psi (668 MPa)
- **Yield Strength:** 80,000 psi (772 MPa)
- **Elongation:** 19.0%

TM-B9 / TRI-MARK

TM-B9 is designed for the semi-automatic gas shielded welding of modified Grade 91 steels which is used in high temperature and high pressure applications in the power generation and petroleum industry. Its all position capability will fully match the base material properties. The low diffusible hydrogen content in the deposited metal is an asset for crack control during the preheat and postweld heat treat cycles of high strength steel. The x-ray quality weld has high operator appeal while the high alloy content of this product makes following the weld procedure extremely important.

Specifications:
E91T1-B9M per AWS A5.29, ASME SFA 5.29

Shielding Gas:
75% Ar/25% CO₂, 35-50 C.F.H.

Welding Positions:
All positions

Standard Diameters:
.045*

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Cr</th>
<th>Ni</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>.12</td>
<td>.06</td>
<td>.15</td>
<td>.013</td>
<td>.008</td>
<td>9.0</td>
<td>.7</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Characteristics:
- Fast freezing slag for out-of-position welding.
- Low spatter level.
- X-ray quality weld.

Mechanical Properties:

- **Tensile Strength:** 126,000 psi (868 MPa)
- **Yield Strength:** 112,000 psi (772 MPa)
- **Elongation:** 15%
- **CVN@+71°F:** 22 ft-lbs (29.8 Joules)
C1 / C2 / C3

Description

C1 Addition of 2 - 2.75% Nickel to improve impact notch toughness.
C2 Addition of 3 - 3.75% Nickel to improve impact notch toughness.
C3 Addition of 0.8 - 1.10% Nickel to improve impact notch toughness.

Typical Applications

C1 Shipbuilding, Piping, Storage Tanks.
C2 Shipbuilding, Piping, Storage Tanks, Abrasion Resistant Plate, A514(T1) steels.
C3 80,000 psi tensile strength steels, Abrasion Resistant Plate, A514(T1) steels.

HOBALLOY® 8018C1 / AWS E8018-C1 H4

Hoballoy 8018C1 is a high-quality electrode that’s designed for applications of 2% nickel deposits and the welding of nickel-bearing steels for low temperature applications where toughness of the weld metal is important. It provides good puddle control, excellent wetting action and tie-in and offers good arc characteristics as well as excellent notch toughness (65 ft-lbs. at -75°F) and easy slag removal. Hoballoy 8018C1 is also great for welding in conditions of high heat or humidity as it features a specially-formulated coating that’s designed to minimize hydrogen cracking and starting porosity.

Typical applications:
• shipbuilding
• piping
• tanks used in the storage of gases

Typical weld metal properties (Chem Pad):

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>.04</td>
<td>1.01</td>
<td>.26</td>
<td>.01</td>
<td>.01</td>
<td>2.57</td>
</tr>
</tbody>
</table>

Typical mechanical properties (stress relieve 1 hour @ 1150°F):

Tensile Strength (psi) 95,000 (656 MPa)
Yield Strength (psi) 84,000 (581 MPa)
Elongation % in 2” 27%

Typical Charpy V-notch impact values (SR):
Avg. at -75°F (-59°C) 76 ft-lbs (103 Joules)

Available diameter and recommended operating ranges:
3/32” (2.4 mm) 70-110 amps
1/8” (3.2 mm) 90-160 amps
5/32” (4.0 mm) 130-220 amps
3/16” (4.8 mm) 200-300 amps

Type of current: DCEP or AC

Approvals and conformance:
• AWS A5.5, E8018-C1 H4
• ASME SFA 5.5, F-4, A-10, E8018-C1 H4
• ABS E8018-C1

Stick
LOW ALLOY

HOBALLOY® 8018C2 / HOBART
AWS E8018-C2 H4
Hoballoy 8018C2 is an outstanding electrode for low temperature applications requiring tensile strengths greater than 80,000 psi and for welding 2% to 4% nickel steels. It features a special formulated coating designed to minimize hydrogen cracking and starting porosity.

Typical applications:
• shipbuilding
• piping and gas storage tanks
• AR and T-1 steel welding

Typical Weld metal properties (Chem Pad):

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>.02</td>
<td>.84</td>
<td>.16</td>
<td>.01</td>
<td>.01</td>
<td>.36</td>
<td>.01</td>
<td>.09</td>
<td>.01</td>
</tr>
</tbody>
</table>

Typical mechanical properties (stress relieve 1 hour @ 1150°F):
- Tensile Strength (psi) 100,000 (693 MPa)
- Yield Strength (psi) 86,000 (591 MPa)
- Elongation % in 2” 23%

Typical Charpy V-notch impact values (SR):
Avg. at -100°F (-73°C) 48 ft-lbs (66 Joules)

Available diameter and recommended operating ranges:
- 3/32” (2.4 mm) 70-110 amps
- 1/8” (3.2 mm) 90-160 amps
- 5/32” (4.0 mm) 130-220 amps
- 1/4” (6.4 mm) 300-400 amps

Type of current: DCEP

Approvals and conformances:
- AWS A5.5, E8018-C2 H4
- ASME SFA 5.5, F-4, A-10, E8018-C2 H4
- ABS E8018-C2

HOBALLOY® 8018C3 / HOBART
AWS E8018-C3 H4
Hoballoy 8018C3 electrodes are designed for high tensile steels requiring 1% nickel weld deposits.

Typical applications:
• commercial using 80,000 tensile steels
• military using 80,000 tensile steels
• welding of AR and T-1 steels

Typical weld metal properties (Chem Pad):

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>.04</td>
<td>.90</td>
<td>.02</td>
<td>.01</td>
<td>.01</td>
<td>.36</td>
<td>.01</td>
<td>.09</td>
<td>.01</td>
</tr>
</tbody>
</table>

Typical mechanical properties (AW):
- Tensile Strength (psi) 80,000 (554 MPa)
- Yield Strength (psi) 68,000 (470 MPa)
- Elongation % in 2” 27%

Typical Charpy V-notch impact values (AW):
Avg. at -40°F (-40°C) 128 ft-lbs (174 Joules)

Available diameter and recommended operating ranges:
- 3/32” (2.4 mm) 70-110 amps
- 1/8” (3.2 mm) 90-160 amps
- 5/32” (4.0 mm) 130-220 amps
- 3/16” (4.8 mm) 200-300 amps

Type of current: DCEP or AC

Approvals and conformances:
- AWS A5.5, E8018-C3 H4
- ASME SFA 5.5, F-4, A-10, E8018-C3 H4
- MIL-E-22200/1 (1/8, 5/32)
- ABS E8018-C3

SMAW (“Stick”)
FCAW (“Flux-Cored”)
GMAW (“Metal-Cored”)
Description

Ni1 1% Nickel alloyed to increase strength and improved impact notch toughness. Can also be used to weld weathering steels but will not immediately color match.

Ni2 Addition of 2% Nickel to improve impact notch toughness.

Typical Applications

Ni1 Heavy equipment, Earthmoving, Petro-chemical, Weathering Steels.

Ni2 Heavy equipment, Earthmoving, Shipbuilding, Offshore Oil Rigs, HSLA Steels.

TM-81N1 / TRIMARK

TM-81N1 is comparable in deposit composition and properties to E8018-C3 covered electrodes in deposit composition and properties. In many applications, TM-81N1 is more economical to use than stick electrodes. It is recommended for petro-chemical applications where deposit nickel must be kept low, for weathering-steel fabrication where color match is not required, and for mining and earthmoving equipment and other fabrication where good low temperature impact values are needed. The unique slag system of this wire provides the welder appeal found with acid slag (EXXT-1) products and the mechanical properties normally associated with basic slag wires. Weld metal diffusible hydrogen levels also rival those of basic slag (EXXT-5) wires, making this an excellent choice for the more demanding applications. This wire is intended for use with 100% CO₂ or 75% Ar/25% CO₂ gas shielding.

Specifications:
- E80T1-N1C H8, E80T1-N1M H8 per AWS A5.29, ASME SFA 5.29
- Military Spec. MIL-E-24403/1, Class MIL-80T1-N1C (CO₂ only)
- ABS to AWS E80T1-N1
- CWB 100% CO₂, E80T1-N1 H16, 90% Ar/10% CO₂, E80T1-N1M H16

Shielding Gas:
- 100% CO₂, 75% Ar/25% CO₂, 35-50 cfh

Welding Positions:
- Flat and horizontal

Standard Diameter:
- 1/16”, 5/64”, 3/32”

Characteristics:
- 1% nickel weld metal.
- Provides good toughness at low temperatures.
- Intended for welding steels requiring good CVN values at sub-zero temperatures.
- Excellent welder appeal.
- Low weld metal hydrogen levels approach those of an EXXT-5 wire.

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% CO₂</td>
<td>.10</td>
<td>.89</td>
<td>.38</td>
<td>.011</td>
<td>.008</td>
<td>.98</td>
</tr>
<tr>
<td>75% Ar/25% CO₂</td>
<td>.08</td>
<td>1.29</td>
<td>.43</td>
<td>.007</td>
<td>.011</td>
<td>.91</td>
</tr>
</tbody>
</table>

Mechanical Properties:

- Tensile Strength: 100% CO₂ 91,000 psi, 75% Ar/25% CO₂ 98,700 psi
- Yield Strength: 76,000 psi, 83,500 psi
- Elongation: 25%, 24%
- CVN @ -20°F: 52 ft-lbs, 46 ft-lbs
TM-811N1 / △TRI-MARK®

TM-811N1 is comparable in deposit composition and properties to E8018-C3 covered electrodes in deposit composition and properties. In many applications, TM-811N1 is more economical to use than stick electrodes. It is recommended for petro-chemical applications where deposit nickel must be kept low for weathering-steel fabrication where color match is not required. It is used for mining and earth moving equipment and other fabrication where good low temperature impact values are needed. TM-811N1 offers good welder appeal, with excellent arc stability, low spatter, fast-freezing slag to facilitate all-position welding, and very easy slag removal. It is recommended for single and multiple pass welding in all positions using either CO₂ or a 75% Ar/25% CO₂ gas mixture for shielding.

Specifications:
E81T1-Ni1CJ H8, E81T1 Ni1MJ H8 per AWS A5.29, ASME SFA 5.29
ABS Grade 3SA, 3SYA
CW6 100% CO₂, E81T1-Ni1 H8, 90% Ar/10% CO₂, E81T-Ni1M H8

Shielding Gas:
100% CO₂, 75% Ar/25% CO₂, 35-50 ccf

Welding Positions:
All positions

Standard Diameter:
.045", .052", 1/16"*

Characteristics:
- 1% nickel weld deposit.
- Can be used in place of E8018-C3 covered electrodes.
- Excellent arc stability and low spatter levels.
- Can be used with either 100% CO₂ or 75% Ar/25% CO₂ shielding gas.

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% CO₂</td>
<td>.06</td>
<td>1.20</td>
<td>.03</td>
<td>.015</td>
<td>.94</td>
<td></td>
</tr>
</tbody>
</table>

Mechanical Properties:
- Tensile Strength: 100,000 psi (690 MPa)
- Yield Strength: 75,000 psi (520 MPa)
- Elongation % in 2" 23%
- CVN @ -40°F: 38 ft-lbs 54 ft-lbs

Formula XL-8Ni1 / HOBART®

Formula XL-8Ni1 is an all-position tubular wire that is designed for welding medium carbon and low alloy steels. Specifically formulated to produce a high-quality, X-ray clear weld deposit that is flat to slightly convex in contour. Formula XL-8Ni1 provides you with good wet-in capabilities along with high impact values at low temperatures, and it allows you to weld over rust, mill scale and some primers without the need for pre-cleaning. Plus, with low spatter levels and easy slag removal, clean-up is kept to a minimum.

Specifications:
E81T1-Ni1MJ H8 per AWS A5.29, ASME SFA 5.29, E81T1-Ni1 MJ H8 75% Ar/25% CO₂, 3SYA H10

Shielding Gas:
75% Ar/25% CO₂

Welding Positions:
All positions

Standard Diameter:
.045", 1/16"*

Typical Weld Metal Properties*(Chem Pad):

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% CO₂</td>
<td>.08</td>
<td>1.35</td>
<td>.40</td>
<td>.014</td>
<td>.011</td>
<td>1.06</td>
</tr>
</tbody>
</table>

Characteristics:
- Superior welding characteristics in all positions.
- 2% nickel weld metal promotes good CVN impact properties.
- Can be used with either 100% CO₂ or 75-80% Ar/bal CO₂ shielding gas.
- Can be used in place of E8018-C3 covered electrodes.

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% CO₂</td>
<td>.05</td>
<td>.94</td>
<td>.37</td>
<td>.011</td>
<td>.018</td>
<td>2.42</td>
</tr>
</tbody>
</table>

Mechanical Properties:
- Tensile Strength: 96,000 psi (664 MPa)
- Yield Strength: 80,000 psi (557 MPa)
- Elongation % in 2" 24.5%
- CVN @ -40°F: 58 ft-lbs 95 ft-lbs

TM-811N2 / △TRI-MARK®

TM-811N2 offers excellent arc stability and low spatter when using CO₂ or Ar/CO₂ mixtures with up to 80% argon. These weldability features, combined with low diffusible hydrogen levels and good impact values, make the TM-811N2 a superior choice for shipbuilding, offshore drilling rigs, HSLA steels, and weathering steels where color match is not required. The wire is recommended for single and multiple pass welding in all positions using either 100% CO₂ or Ar/CO₂ mixtures with up to 80% Ar.

Specifications:
E81T1-Ni2C H8, E81T1-Ni2M H8 per AWS A5.29, ASME SFA 5.29
ABS Grade 3YSA
Military Spec. MIL-E-24403/1, Class MIL-81T1-Ni2C (CO₂ only)
CW6 100% CO₂, E81T1-Ni2 H8, E81T1-Ni2M H8
Lloyd’s Register of Shipping, Grade 3S, 3YS H15
DNV Grade III Y40MS

Shielding Gas:
100% CO₂, 75-80% Ar/bal CO₂, 35-50 cfh

Welding Positions:
All positions

Standard Diameters:
.045", .052", 1/16"*

Characteristics:
- Superior welding characteristics in all positions.
- 2% nickel weld metal promotes good CVN impact properties.
- Can be used with either 100% CO₂ or 75-80% Ar/bal CO₂ shielding gas.
- Can be used in place of E8018-C3 covered electrodes.

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% CO₂</td>
<td>.05</td>
<td>1.06</td>
<td>.42</td>
<td>.012</td>
<td>.016</td>
<td>2.40</td>
</tr>
</tbody>
</table>

Mechanical Properties:
- Tensile Strength: 85,000 psi 99,000 psi
- Yield Strength: 72,000 psi 90,000 psi
- Elongation % in 2" 25%
- CVN @ -40°F: 23 ft-lbs 27 ft-lbs
TM-911N2 / TRI-MARK

TM-911N2 is alloyed with over 2% nickel to combine tensile strength in the 90,000/110,000 psi range with good impact values at -40°F. It is used for welding various steels, including ASTM A203, Grades A & B. It has excellent operator appeal; the smooth, stable arc and quick-freezing slag facilitate vertical and overhead welding. Flat and horizontal welds can also be readily deposited; welds are of excellent quality. It is used for single and multiple pass welding in all positions with 100% CO₂ shielding gas.

Specifications:
- E91T1-N2C per AWS A5.29, ASME SFA 5.29
- ABS E91T1-N2

Shielding Gas:
- 100% CO₂, 35-50 ccf

Welding Positions:
- All positions

Standard Diameters:
- .045”, .052”, 1/16”

Characteristics:
- Excellent operator appeal with quick freezing slag for out of position welding.
- Good low temperature impact.
- Used for welding 2% nickel and other high strength steels.

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% CO₂</td>
<td>.07</td>
<td>1.18</td>
<td>.60</td>
<td>.012</td>
<td>.021</td>
</tr>
</tbody>
</table>

Mechanical Properties:
- Tensile Strength: 99,000 psi
- Yield Strength: 86,000 psi
- Elongation: 23%
- CVN @ -40°F: 36 ft-lbs

The above properties were determined with 100% CO₂ shielding gas.

METALLOY 80N1 / TRI-MARK

Metalloy 80N1 is a gas-shielded metal-cored wire that's designed for the single or multiple pass welding of nickel-molybdenum steels such as 1/2 Ni/1/4 Mo, 1 Ni/1/4 Mo, and 1 1/2 Ni/1 Ni/4 Mo. Designed for use with argon gas mixtures, Metalloy 80N1 is ideal for welding castings, equipment and those applications requiring toughness at sub-zero temperatures.

Specifications:
- E80C-Ni1 per AWS A5.28
- ABS Grade 3SA, 3YSA

Shielding Gas:
- 98% Ar/2% O₂, 75% Ar/25% CO₂, 35-50 ccf

Welding Positions:
- CV Spray—flat, horizontal, vertical down Pulse and Short Arc—all positions

Standard Diameters:
- .045”, .052”, 1/16”

Characteristics:
- Suitable for nickel-molybdenum steels.
- High impacts at sub-zero temperatures.
- Single or multiple pass welding.

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>Ni</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>98% Ar/2% O₂</td>
<td>.04</td>
<td>1.14</td>
<td>.40</td>
<td>.97</td>
</tr>
<tr>
<td>75% Ar/25% CO₂</td>
<td>.05</td>
<td>.86</td>
<td>.21</td>
<td>.97</td>
</tr>
</tbody>
</table>

Mechanical Properties:
- Tensile Strength: 90,000 psi
- Yield Strength: 85,900 psi
- Elongation: 26%
- CVN @ -50°F: 46 ft-lbs

METALLOY VANTAGE™ Ni1 / TRI-MARK

Metalloy Vantage Ni1 is a metal-cored wire designed for single or multiple pass welding of nickel-molybdenum steels such as 1/2 Ni/1/4 Mo, 1 Ni/1/4 Mo, and 1 1/2 Ni/1 Ni/4 Mo. Designed for use with argon gas mixtures, Metalloy Vantage Ni1 is ideal for welding castings, equipment and those applications requiring toughness at sub-zero temperatures. Additionally it is well suited for joining HSLA weathering steels in structural construction applications where color match is not required.

Specifications:
- E80C-Ni1 H4 per AWS A5.28, ASME SFA 5.28
- CBW E80C-Ni1 H4

Shielding Gas:
- 95-98% Ar/2% O₂, 75% Ar/25% CO₂, 35-50 ccf

Welding Positions:
- CV Spray—flat, horizontal, vertical down Pulse and Short Arc—all positions

Standard Diameters:
- .045”, .052”, 1/16”

Characteristics:
- Exceptionally clean weld beads with minimal silicon islands; almost self-peeling.
- Weld bead toe lines are almost completely free of silicon deposits.
- Better gap bridging and reduced burn through than solid wire.
- Higher deposition rates and travel speeds than solid wire.
- High impacts at sub-zero temperatures.

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>75% Ar/25% CO₂</td>
<td>.05</td>
<td>1.38</td>
<td>.65</td>
</tr>
<tr>
<td>95% Ar/5% O₂</td>
<td>.06</td>
<td>1.15</td>
<td>.66</td>
</tr>
</tbody>
</table>

Mechanical Properties:
- Tensile Strength: 92,000 psi
- Yield Strength: 79,000 psi
- Elongation: 26%
- CVN @ -20°F (-29°C): 48 ft-lbs (65 Joules)
- CVN @ -50°F (-46°C): 44 ft-lbs (60 Joules)
METALLOY 80N2

Metalloy 80N2 is a metal-cored low alloy wire that is designed for single and multiple pass welding of structures where high Charpy-impact values are required at sub-zero temperatures. This higher nickel alloy product offers superior mechanical properties when used with 98% Ar/2% O₂ or 75% Ar/25% CO₂ shielding gas and is appropriate for the offshore oil platforms, shipbuilding, and other applications where good toughness is desired.

Specifications:
- E80C-Ni2 per AWS A5.28

Shielding Gas:
- 98% Ar/2% O₂, 75% Ar/25% CO₂, 35-50 cfm

Welding Positions:
- CV Spray—flat, horizontal, vertical down
- Pulse and Short Arc—all positions

Standard Diameters:
- .045"

Characteristics:
- High impacts at sub-zero temperatures.
- High deposition rates.
- Single or multiple pass welding.

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>98% Ar/2% O₂</td>
<td>.04</td>
<td>1.09</td>
<td>.34</td>
<td>2.26</td>
</tr>
<tr>
<td>75% Ar/25% CO₂</td>
<td>.03</td>
<td>.77</td>
<td>.28</td>
<td>2.23</td>
</tr>
</tbody>
</table>

Mechanical Properties:

<table>
<thead>
<tr>
<th></th>
<th>98% Ar/2% O₂</th>
<th>75% Ar/25% CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength:</td>
<td>90,000 psi*</td>
<td>78,200 psi**</td>
</tr>
<tr>
<td>Yield Strength:</td>
<td>77,000 psi</td>
<td>65,800 psi</td>
</tr>
<tr>
<td>Elongation:</td>
<td>26%</td>
<td>30%</td>
</tr>
<tr>
<td>CVN @ -50°F:</td>
<td>38 ft-lbs</td>
<td></td>
</tr>
<tr>
<td>CVN @ -80°F:</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

* Stress relieved 1 hr. @ 1150°F.
** Stress relieved 8 hrs. @ 1150°F.
D2

Description
Manganese-Molybdenum filler metal used for welding a wide variety of steels including HSLA, A514 (T1), and HY80 – HY100.

Typical Applications
Earthmoving, Heavy Equipment, Crane Mfg, General Fabrication.

HOBALLOY® 10018D2 / HOBAR
AWS E10018-D2 H4
A high-quality electrode, Hoballoy 10018D2 is designed for the welding of high tensile steels and manganese-molybdenum steels requiring tensile strengths of at least 100,000 psi. It has high operator appeal and offers a wide variety of welding advantages including good arc characteristics, ductility, crack-resistance, easy slag removal, and low spatter and smoke. Plus, Hoballoy 10018D2 is an ideal choice for conditions of high heat and humidity because it features a special coating that’s designed to reduce moisture pick-up, which also helps to minimize hydrogen cracking and starting porosity.

Typical applications:
- manganese-moly castings
- alloy forgings
- structural
- pressure vessel applications in either the as welded or stress-relieved condition

Typical weld metal properties (Chem Pad):

<table>
<thead>
<tr>
<th>Element</th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Mo</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.06</td>
<td>1.96</td>
<td>.25</td>
<td>.01</td>
<td>.01</td>
<td>.35</td>
<td>.08</td>
</tr>
</tbody>
</table>

Typical mechanical properties (stress relieve 1 hour @ 1150°F):
- Tensile Strength (psi) 116,000 (797 MPa)
- Yield Strength (psi) 100,000 (693 MPa)
- Elongation % in 2' 22%

Typical Charpy V-notch impact values (SR):
- Avg. at -60°F (-51°C) 32 ft-lbs (47 Joules)

Available diameter and recommended operating ranges:
- 3/32" (2.4 mm) 70-110 amps
- 1/8" (3.2 mm) 90-160 amps
- 5/32" (4.0 mm) 130-220 amps
- 3/16" (4.8 mm) 200-300 amps
- 1/4" (6.4 mm) 300-400 amps

Type of current: DCEP or AC

Approvals and conformance:
- AWS A5.5, E10018-D2 H4R
- ASME SFA 5.5, F-4, A-11, E10018-D2 H4R
Metalloy Vantage D2 / **Tri-Mark**

Metalloy Vantage D2 is a gas-shielded metal-cored wire that is equivalent to ER80S-D2 solid wire. Metalloy Vantage D2 offers improved welding performance through higher deposition rates and better wet-in compared to solid wire. In addition, weld toe lines are almost completely free of silicon deposits which save time and money by eliminating troublesome cleanup and part preparation. With excellent mechanical properties, Metalloy Vantage D2 was developed for high-strength, low alloy steels found in heavy equipment and structural applications. Metalloy Vantage D2 is recommended for single-pass and multiple pass welding with Ar/CO2 shielding gas.

Specifications:

E90C-D2 per AWS A5.28

- **Shielding Gas:** 95-98% Ar/bal O2, 95-98% Ar/bal CO2
- **Welding Positions:** CV Spray—flat, horizontal, vertical down Pulse and Short Arc—all positions
- **Standard Diameters:** .045", .052", .065" (11/64"")
- **Characteristics:**
 - High deposition rates compared to solid wire.
 - Better wetting action compared to solid wire.
 - Single or multiple pass welding.

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th>Element</th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>Ni</th>
<th>Mo</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% Ar/5% O2</td>
<td>.08</td>
<td>1.34</td>
<td>.53</td>
<td>.02</td>
<td>.50</td>
<td>.06</td>
</tr>
<tr>
<td>90% Ar/10% CO2</td>
<td>.08</td>
<td>1.80</td>
<td>.66</td>
<td>.01</td>
<td>.50</td>
<td>.02</td>
</tr>
</tbody>
</table>

Mechanical Properties:

- **Tensile Strength:** 111,000 psi
- **Yield Strength:** 97,000 psi
- **Elongation:** 24%
- **CVN @ -20°F:** 49 ft-lbs

The above properties were determined with 100% CO2 shielding gas.

Stress Relieved 1 hr. @ 1150°F
Description
Addition of .5% copper to weld weathering steels and where rapid color matching is required.

Typical Applications
Weathering Steels such as ASTM A242, A588, and A709 Gr. 50.

TM-811W / TRI-MARK™
TM-811W meets Structural Welding Code D1.1 filler metal requirements for exposed bare applications of ASTM A242, A588, and A709 Grade 50W steels. These weathering steels are normally used on bridges and buildings. TM-811W is alloyed to provide a weld metal color match in the weathering condition, as well as good properties in the 80,000-100,000 psi strength range with good impact values. It is recommended for single and multiple pass welding in all positions with 100% CO2 shielding gas.

Specifications:
EBITI-W2C HB per AWS A5.29, ASME SFA 5.29

Shielding Gas:
100% CO2, 35-50 cfh

Welding Positions:
All positions

Standard Diameters:
.045", .052", 1/16"

Characteristics:
• Meets D1.1 structural code to weld A242, A588 and A709 Grade 50W.
• Produces color match to weathering grade base material.
• Capable of welding in all positions.

Undiluted Weld Metal Chemistry:

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Cr</th>
<th>Ni</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>.06</td>
<td>1.30</td>
<td>.70</td>
<td>.008</td>
<td>.014</td>
<td>.59</td>
<td>.74</td>
<td>.38</td>
</tr>
</tbody>
</table>

Mechanical Properties:

- Tensile Strength: 99,000 psi
- Yield Strength: 85,000 psi
- Elongation: 25%
- CVN @ -20°F: 25 ft-lbs

The above properties were determined with 100% CO2 shielding gas.
Comparative Index of Low Alloy Electrodes

<table>
<thead>
<tr>
<th>AWS Class</th>
<th>HOBART</th>
<th>ESAB</th>
<th>LINCOLN</th>
</tr>
</thead>
<tbody>
<tr>
<td>E8018-B2</td>
<td>Hoballoy 8018-B2</td>
<td>Atom Arc 8018-CM</td>
<td></td>
</tr>
<tr>
<td>E8018-B6</td>
<td>Hoballoy 8018B6</td>
<td>Atom Arc 8018-B6</td>
<td></td>
</tr>
<tr>
<td>E8018-B8</td>
<td>Hoballoy 8018B8</td>
<td>Atom Arc 8018-B8</td>
<td></td>
</tr>
<tr>
<td>E8018-C1</td>
<td>Hoballoy 8018C1</td>
<td>Atom Arc 8018-C1</td>
<td>Excalibur 8018-C1 MR</td>
</tr>
<tr>
<td>E8018-C2</td>
<td>Hoballoy 8018C2</td>
<td>Atom Arc 8018-N</td>
<td></td>
</tr>
<tr>
<td>E8018-C3</td>
<td>Hoballoy 8018C3</td>
<td>Atom Arc 8018</td>
<td>Excalibur 8018-C3 MR</td>
</tr>
<tr>
<td>E9015-B9</td>
<td>Hoballoy 9015B9</td>
<td>Atom Arc 9015-B9</td>
<td></td>
</tr>
<tr>
<td>E9018-B3</td>
<td>Hoballoy 9018B3</td>
<td>Atom Arc 9018-CM</td>
<td></td>
</tr>
<tr>
<td>E8018-B3L/E9018-B3L</td>
<td>Hoballoy 9018B3L</td>
<td>Atom Arc 9018-B3L</td>
<td></td>
</tr>
<tr>
<td>E9018M</td>
<td>Hoballoy 9018M</td>
<td>Atom Arc 9018</td>
<td>Excalibur 9018M MR</td>
</tr>
<tr>
<td>E10018-D2</td>
<td>Hoballoy 10018D2</td>
<td>Atom Arc 10018-MM</td>
<td></td>
</tr>
<tr>
<td>E10018M</td>
<td>Hoballoy 10018M</td>
<td>Atom Arc 10018</td>
<td></td>
</tr>
<tr>
<td>E11018M</td>
<td>Hoballoy 11018M</td>
<td>Atom Arc T</td>
<td>Excalibur 11018M MR</td>
</tr>
<tr>
<td>E12018M</td>
<td>Hoballoy 12018M</td>
<td>Atom Arc 12018</td>
<td></td>
</tr>
</tbody>
</table>

Approvals, Specifications, Classifications

All filler metals listed conform to the specifications listed in each section. Because some agencies do not specifically approve particular types, please be cautious to note whether or not the heading for each section indicates specific approval.

<table>
<thead>
<tr>
<th>Product</th>
<th>AWS/ASME</th>
<th>ABS</th>
<th>Lloyd’s</th>
<th>CWB</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOBALLOY 7018A1</td>
<td>E7018-A1</td>
<td>E7018-A1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HOBALLOY 8018B2</td>
<td>E8018-B2</td>
<td>E8018-B2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HOBALLOY 8018B2L</td>
<td>E8018-B2L</td>
<td>E8018-B2L</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HOBALLOY 8018B6</td>
<td>E8018-B6</td>
<td>E8018-B6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HOBALLOY 8018B8</td>
<td>E8018-B8</td>
<td>E8018-B8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HOBALLOY 8018C1</td>
<td>E8018-C1</td>
<td>E8018-C1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HOBALLOY 8018C2</td>
<td>E8018-C2</td>
<td>E8018-C2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HOBALLOY 8018C3</td>
<td>E8018-C3</td>
<td>E8018-C3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HOBALLOY 9015B9</td>
<td>E9015-B9</td>
<td>E9015-B9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HOBALLOY 9018B3</td>
<td>E9018-B3</td>
<td>E9018-B3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HOBALLOY 9018B3L</td>
<td>E9018-B3L</td>
<td>E9018-B3L</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HOBALLOY 9018M</td>
<td>E9018-M</td>
<td>E9018-M</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HOBALLOY 10018D2</td>
<td>E10018-D2</td>
<td>E10018-D2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HOBALLOY 10018M</td>
<td>E10018-M</td>
<td>E10018-M</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HOBALLOY 11018M</td>
<td>E11018-M</td>
<td>E11018-M</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HOBALLOY 12018M</td>
<td>E12018-M</td>
<td>E12018-M</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Comparative Index of Flux-Cored Low Alloy Wires

<table>
<thead>
<tr>
<th>Tri-Mark</th>
<th>AWS Classification</th>
<th>Select Arc</th>
<th>Lincoln</th>
<th>ESAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM-81B2</td>
<td>E80T1-B2C</td>
<td>Select 81-B2</td>
<td></td>
<td>Dual Shield 88 CM</td>
</tr>
<tr>
<td>TM-91B3</td>
<td>E90T1-B3C</td>
<td>Select 91-B3</td>
<td></td>
<td>Dual Shield 98 CM</td>
</tr>
<tr>
<td>TM-911B3</td>
<td>E91T1-B3C/M H4</td>
<td>Select 910-B3</td>
<td></td>
<td>Dual Shield 9000 B3</td>
</tr>
<tr>
<td>TM-B6</td>
<td>E81T1-B6C</td>
<td>Select 810-B6</td>
<td></td>
<td>Dual Shield B6</td>
</tr>
<tr>
<td>TM-B9</td>
<td>E91T1-B9M</td>
<td>Select 810-B9</td>
<td></td>
<td>Dual Shield B9</td>
</tr>
<tr>
<td>TM-81N1</td>
<td>E80T1-Ni1C/M H8</td>
<td>Select 810-Ni1</td>
<td>Outershield 81 Ni1-H</td>
<td>Dual Shield II 8000C3</td>
</tr>
<tr>
<td></td>
<td>E81T1-Ni1MJ</td>
<td>Select 810-Ni1</td>
<td>Outershield 81 Ni1-H</td>
<td>Dual Shield II 80N1</td>
</tr>
<tr>
<td>TM-811N2</td>
<td>E81T1-Ni2C/M H8</td>
<td>Select 810-Ni2</td>
<td></td>
<td>Dual Shield 8000N2</td>
</tr>
<tr>
<td>TM-91N2</td>
<td>E91T1-Ni2C</td>
<td>Select 910-Ni2</td>
<td></td>
<td>Dual Shield 9100N2</td>
</tr>
<tr>
<td>TM-105D2</td>
<td>E100T5-D2C</td>
<td>Select 105-D2</td>
<td></td>
<td>Dual Shield 100D2</td>
</tr>
<tr>
<td>FabCO 81K2-C</td>
<td>E81T1-K2CJ H8</td>
<td>Select 812-K2</td>
<td>Outershield 81K2-H</td>
<td>Dual Shield II 81K2</td>
</tr>
<tr>
<td>TM-88K2</td>
<td>E81T1-K2MJ H8</td>
<td>Select 812-K2</td>
<td>Outershield 81K2-H</td>
<td>Dual Shield II 81K2</td>
</tr>
<tr>
<td>TM-9K2</td>
<td>E90T1-K2C</td>
<td>Select 95-K2</td>
<td></td>
<td>Dual Shield II 81K2</td>
</tr>
<tr>
<td>TM-99K2</td>
<td>E91T1-K2C H8</td>
<td>Select 910-K2</td>
<td>Outershield 91K2-H</td>
<td>Dual Shield II 90K2</td>
</tr>
<tr>
<td>TM-9K2</td>
<td>E91T1-K2M H8</td>
<td>Select 910-K2</td>
<td>Outershield 91K2-H</td>
<td>Dual Shield II 91K2</td>
</tr>
<tr>
<td>TM-10K2</td>
<td>E101T1-1GM</td>
<td>Select 100-K3</td>
<td></td>
<td>Dual Shield II 100K3</td>
</tr>
<tr>
<td>TM-101K3</td>
<td>E100T1-K3C</td>
<td>Select 100-K3</td>
<td></td>
<td>Dual Shield II 100K3</td>
</tr>
<tr>
<td>TM-11K3</td>
<td>E110T1-K3C</td>
<td>Select 110-K3</td>
<td></td>
<td>Dual Shield II 110K3</td>
</tr>
<tr>
<td>TM-111K3-C</td>
<td>E111T1-K3C H8</td>
<td>Select 111-K3-C</td>
<td></td>
<td>Dual Shield II 111K3-C</td>
</tr>
<tr>
<td>TM-111K3-M</td>
<td>E111T1-K3MJ H8</td>
<td>Select 111-K3-M</td>
<td></td>
<td>Dual Shield II 111K3-M</td>
</tr>
<tr>
<td>FabCO 110K3-M</td>
<td>E111T1-K3MJ H4</td>
<td>Select 111-K3-M</td>
<td></td>
<td>Dual Shield II 111K3-M</td>
</tr>
<tr>
<td>TM-115</td>
<td>E100T5-K3C</td>
<td>Select 115-K3</td>
<td></td>
<td>Dual Shield II 115K3</td>
</tr>
<tr>
<td>TM-125K4</td>
<td>E120T5-K4C</td>
<td>Select 125-K4</td>
<td></td>
<td>Dual Shield II 125K4</td>
</tr>
<tr>
<td>TM-811W</td>
<td>E81T1-W2C H8</td>
<td>Select 810-W</td>
<td></td>
<td>Dual Shield 8100W</td>
</tr>
</tbody>
</table>

Packaging of Hobart/Tri-Mark Welding Wires

<table>
<thead>
<tr>
<th>Package Size</th>
<th>Pallet Net weight lbs. (kg)</th>
<th>Flange Diameter in. (m)</th>
<th>Hub Diameter in. (m)</th>
<th>Width in. (m)</th>
<th>Inside Diameter in. (m)</th>
<th>Arbor Hole in. (m)</th>
<th>Engaging Hole in. (m)</th>
<th>Engaging Hole Off Center in. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 lb. Spool</td>
<td>2,400 (1091.0)</td>
<td>8.0” (.20)</td>
<td>3-5/16” (.09)</td>
<td>2-1/2” (.06)</td>
<td>n/a</td>
<td>2-1/32” (.01)</td>
<td>7/16” (.04)</td>
<td>1-3/4” (.04)</td>
</tr>
<tr>
<td>33 lb. Spool</td>
<td>2,376 (1080.0)</td>
<td>11-7/8” (.30)</td>
<td>8-1/4” (.21)</td>
<td>4” (.10)</td>
<td>n/a</td>
<td>2-1-16” (.05)</td>
<td>7/16” (.04)</td>
<td>1-3/4” (.04)</td>
</tr>
<tr>
<td>60 lb. Coil</td>
<td>1,920 (871.7)</td>
<td>n/a</td>
<td>n/a</td>
<td>4” (.10)</td>
<td>12” (.30)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>500 lb. X-PK</td>
<td>2,000 (907.4)</td>
<td>32-1/4” (.82 m)</td>
<td>20-3/8” (.52 m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>750 lb. X-PK</td>
<td>3,000 (1361.1)</td>
<td>35” (.89 m)</td>
<td>23-3/8” (.59 m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n/a</td>
</tr>
</tbody>
</table>
TUBULAR PRODUCT CHARACTERISTICS

LOW ALLOY

Typical weld metal properties and chemistries as welded with shielding gas noted.

- † Stress relieved 1 hr. @ 1150°F.
- †† Stress relieved 1 hr. @ 1275°F.
- * Drop voltage approximately 1 volt when using argon/CO₂ mixtures.

Welding Parameters

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Position</th>
<th>Amperage</th>
<th>Voltage</th>
<th>Operating Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>.045"</td>
<td>Vertical</td>
<td>200</td>
<td>25</td>
<td>100-220 22-28</td>
</tr>
<tr>
<td></td>
<td>Flat</td>
<td>250</td>
<td>28</td>
<td>100-300 22-31</td>
</tr>
<tr>
<td></td>
<td>Overhead</td>
<td>200</td>
<td>26</td>
<td>150-275 22-29</td>
</tr>
<tr>
<td>.052"</td>
<td>Vertical</td>
<td>225</td>
<td>25</td>
<td>100-275 19-21</td>
</tr>
<tr>
<td></td>
<td>Flat</td>
<td>300</td>
<td>28</td>
<td>100-325 19-31</td>
</tr>
<tr>
<td></td>
<td>Overhead</td>
<td>225</td>
<td>26</td>
<td>150-300 22-28</td>
</tr>
<tr>
<td>1/16"</td>
<td>Vertical</td>
<td>225</td>
<td>25</td>
<td>150-275 22-27</td>
</tr>
<tr>
<td></td>
<td>Flat</td>
<td>350</td>
<td>29</td>
<td>150-400 22-35</td>
</tr>
<tr>
<td></td>
<td>Overhead</td>
<td>225</td>
<td>26</td>
<td>150-300 22-28</td>
</tr>
<tr>
<td>3/32"</td>
<td>Flat</td>
<td>450</td>
<td>30</td>
<td>350-600 26-37</td>
</tr>
</tbody>
</table>

* Drop voltage approximately 1 volt when using argon/CO₂ mixtures.

PRODUCT CHARACTERISTICS

<table>
<thead>
<tr>
<th>Product</th>
<th>AWS Class</th>
<th>AWS Spec.</th>
<th>Tensile Strength (ksi)</th>
<th>Yield Strength (ksi)</th>
<th>Elongation, % in 2"</th>
<th>Impact Strength, CVN (ft-lbs @ °F)</th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Mo</th>
<th>Cr</th>
<th>Ni</th>
<th>V</th>
<th>Cu</th>
<th>Nb</th>
<th>N</th>
<th>Shielding Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM-811A1</td>
<td>E81T1-B1C</td>
<td>A5.29</td>
<td>94.0</td>
<td>83.0</td>
<td>26</td>
<td>.04</td>
<td>.083</td>
<td>.26</td>
<td>.014</td>
<td>.016</td>
<td>.48</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>CO₂</td>
</tr>
<tr>
<td>TM-811B2</td>
<td>E81T1-B2C</td>
<td>A5.29</td>
<td>99.0</td>
<td>87.0</td>
<td>21</td>
<td>.06</td>
<td>.070</td>
<td>.29</td>
<td>.011</td>
<td>.015</td>
<td>.43</td>
<td>1.33</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TM-811B2</td>
<td>E81T1-B2C</td>
<td>A5.29</td>
<td>96.0</td>
<td>84.0</td>
<td>23</td>
<td>.05</td>
<td>.091</td>
<td>.42</td>
<td>.009</td>
<td>.011</td>
<td>.50</td>
<td>1.50</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TM-811B3</td>
<td>E81T1-B3C</td>
<td>A5.29</td>
<td>110.6</td>
<td>99.6</td>
<td>19</td>
<td>.05</td>
<td>.29</td>
<td>.36</td>
<td>.007</td>
<td>.011</td>
<td>.48</td>
<td>4.45</td>
<td>.05</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TM-911B3</td>
<td>E90T1-B3C</td>
<td>A5.29</td>
<td>106.0</td>
<td>93.0</td>
<td>19</td>
<td>.06</td>
<td>.64</td>
<td>.25</td>
<td>.010</td>
<td>.013</td>
<td>2.47</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>CO₂</td>
</tr>
<tr>
<td>TM-911B3</td>
<td>E90T1-B3C</td>
<td>A5.29</td>
<td>112.0</td>
<td>100.0</td>
<td>18.5</td>
<td>.05</td>
<td>.92</td>
<td>.38</td>
<td>.010</td>
<td>.011</td>
<td>.97</td>
<td>2.30</td>
<td>---</td>
<td>75% Ar/25% CO₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM-911B3</td>
<td>E90T1-B3C</td>
<td>A5.29</td>
<td>112.0</td>
<td>100.0</td>
<td>18.5</td>
<td>.05</td>
<td>.92</td>
<td>.38</td>
<td>.010</td>
<td>.011</td>
<td>.97</td>
<td>2.30</td>
<td>---</td>
<td>75% Ar/25% CO₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM-911B3</td>
<td>E90T1-B3C</td>
<td>A5.29</td>
<td>112.0</td>
<td>100.0</td>
<td>18.5</td>
<td>.05</td>
<td>.92</td>
<td>.38</td>
<td>.010</td>
<td>.011</td>
<td>.97</td>
<td>2.30</td>
<td>---</td>
<td>75% Ar/25% CO₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Approximate Wire Feed Speeds and Operating Parameters

<table>
<thead>
<tr>
<th>Product</th>
<th>Diameter</th>
<th>Position</th>
<th>Wire Feed Speed (ipm)</th>
<th>Voltage</th>
<th>Operating Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM-811A1</td>
<td>.045"</td>
<td>Vertical</td>
<td>200</td>
<td>25</td>
<td>100-220 22-28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flat</td>
<td>250</td>
<td>28</td>
<td>100-300 22-31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overhead</td>
<td>200</td>
<td>26</td>
<td>150-275 22-29</td>
</tr>
<tr>
<td>TM-811B2</td>
<td>.052"</td>
<td>Vertical</td>
<td>225</td>
<td>25</td>
<td>100-275 19-21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flat</td>
<td>300</td>
<td>28</td>
<td>100-325 19-31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overhead</td>
<td>225</td>
<td>26</td>
<td>150-300 22-28</td>
</tr>
<tr>
<td>TM-911B3</td>
<td>1/16"</td>
<td>Vertical</td>
<td>225</td>
<td>25</td>
<td>150-275 22-27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flat</td>
<td>350</td>
<td>29</td>
<td>150-400 22-35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overhead</td>
<td>225</td>
<td>26</td>
<td>150-300 22-28</td>
</tr>
<tr>
<td>TM-811W1</td>
<td>3/32"</td>
<td>Flat</td>
<td>450</td>
<td>30</td>
<td>350-600 26-37</td>
</tr>
</tbody>
</table>

* Typical weld metal properties and chemistries as welded with shielding gas noted. † Stress relieved 1 hr. @ 1150°F. †† Stress relieved 1 hr. @ 1275°F.
Low Alloy

PRODUCT CONFORMANCES & APPROVALS

QPL MIL-E 24403

<table>
<thead>
<tr>
<th>MIL Designation</th>
<th>Wire</th>
<th>Qualification Reference</th>
<th>Standard Diameters</th>
<th>SPEC. MIL-E</th>
</tr>
</thead>
<tbody>
<tr>
<td>80T1-N1C (CO2 only)</td>
<td>TM-81N1</td>
<td>CL-76TM-5</td>
<td>1/16", 3/32"</td>
<td>24403/1</td>
</tr>
<tr>
<td>81T1-N2C (CO2 only)</td>
<td>TM-81N2</td>
<td>CL-67TM-2</td>
<td>.045" - 1/16"</td>
<td>24403/1</td>
</tr>
</tbody>
</table>

Canadian Welding Bureau

<table>
<thead>
<tr>
<th>Wire</th>
<th>Approval</th>
<th>Position*</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM-81N1B2, CO2</td>
<td>E81T1-B2C (AWS)</td>
<td>F, H, VU, OH</td>
</tr>
<tr>
<td>TM-81N1, CO2</td>
<td>E80T1-N1C-H8</td>
<td>F, H</td>
</tr>
<tr>
<td>TM-81N1, 75% Ar/25% CO2</td>
<td>E80T1-N1M-H8</td>
<td>F, H</td>
</tr>
<tr>
<td>TM-81N1, CO2</td>
<td>81T1-N1C H8 (AWS)</td>
<td>F, H, VU, OH</td>
</tr>
<tr>
<td>TM-81N1, 90% Ar/10% CO2</td>
<td>E81T1-N1M-H8 (AWS)</td>
<td>F, H, VU, OH</td>
</tr>
<tr>
<td>METALLOY 110, CO2, 95% Ar/5% CO2</td>
<td>E110C-G (AWS)</td>
<td>F, H</td>
</tr>
<tr>
<td>METALLOY 110, 75% Ar/25% CO2</td>
<td>E110C-6 H4 (AWS)</td>
<td>F, H</td>
</tr>
<tr>
<td>METALLOY 80N1, 90% Ar/10%</td>
<td>E80C-N1 H8 (AWS)</td>
<td>F, H</td>
</tr>
<tr>
<td>TM-81N2, CO2</td>
<td>E81T1-N2 H8 (AWS)</td>
<td>F, H, VU, OH</td>
</tr>
<tr>
<td>TM-81N2, 80% Ar/20% CO2</td>
<td>E81T1N2M-H8</td>
<td>F, H, VU, OH</td>
</tr>
<tr>
<td>METALLOY VANTAGE, Ni1, Ar + 1 - 5% O2</td>
<td>E80C-N1 H4 (AWS)</td>
<td>F, H</td>
</tr>
</tbody>
</table>

* D = down-hand, H = horizontal, VU = vertical up, OH = overhead

Bureau Veritas

<table>
<thead>
<tr>
<th>Wire</th>
<th>Approval</th>
<th>Position*</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM-881K2</td>
<td>SSY42M</td>
<td>F, H, VU, OH</td>
</tr>
</tbody>
</table>

* F = flat, H = horizontal, VU = vertical up, OH = overhead

American Bureau of Shipping

<table>
<thead>
<tr>
<th>Wire</th>
<th>Shielding Gas</th>
<th>Approval</th>
<th>Position*</th>
</tr>
</thead>
<tbody>
<tr>
<td>METALLOY 80N1</td>
<td>80% Ar/20% CO2</td>
<td>3SA, 3YSA</td>
<td>F, H</td>
</tr>
<tr>
<td>Formula XL-8N1</td>
<td>75% Ar/25% CO2</td>
<td>3SA, 3YSA, H10</td>
<td>F, H, VU, OH</td>
</tr>
<tr>
<td>TM-81N1</td>
<td>CO2</td>
<td>E80T1-N1 (AWS A5.29)</td>
<td>F, H</td>
</tr>
<tr>
<td>TM-81N1</td>
<td>CO2</td>
<td>3SA, 3YSA</td>
<td>F, H, VU, OH</td>
</tr>
<tr>
<td>TM-81N2</td>
<td>CO2</td>
<td>3YSA</td>
<td>F, H, VU, OH</td>
</tr>
<tr>
<td>TM-91N2</td>
<td>CO2</td>
<td>E91T1-N2C (AWS A5.29)</td>
<td>F, H, VU, OH</td>
</tr>
<tr>
<td>FabCO 81K2-C</td>
<td>100% CO2</td>
<td>3SA, 3YSA</td>
<td>F, H, VU, OH</td>
</tr>
<tr>
<td>TM-881K2</td>
<td>80% Ar/20% CO2</td>
<td>IMPACT @ -60°C = 34 ft-lb</td>
<td>F, H, VU, OH</td>
</tr>
<tr>
<td>TM-991K2</td>
<td>99.1K2 CO2</td>
<td>E91T1-K2C (AWS A5.29)</td>
<td>F, H, VU, OH</td>
</tr>
<tr>
<td>TM-115</td>
<td>E91T1-K2M (AWS A5.29)</td>
<td>E110T5-K3C (AWS A5.29)</td>
<td>F, H</td>
</tr>
<tr>
<td>TM-101</td>
<td>75% Ar/25% CO2</td>
<td>ISO SPEC. 18276-E</td>
<td>F, H, VU, OH</td>
</tr>
<tr>
<td>TM-110K3-C</td>
<td>CO2</td>
<td>E110T1-K3C (AWS A5.29)</td>
<td>F, H, VU, OH</td>
</tr>
<tr>
<td>TM-110K3-M</td>
<td>75% Ar/25% CO2</td>
<td>E110T1-K3M (AWS A5.29)</td>
<td>F, H, VU, OH</td>
</tr>
<tr>
<td>FabCO 110K3-M</td>
<td>75% Ar/25% CO2</td>
<td>AWS E1111T1-K3MJ H4</td>
<td>F, H, VU, OH</td>
</tr>
</tbody>
</table>

* F = flat, H = horizontal, VU = vertical up, OH = overhead

Det Norske Veritas

<table>
<thead>
<tr>
<th>Wire</th>
<th>Approval</th>
<th>Position*</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM-81N2 CO2</td>
<td>Y40MS</td>
<td>F, H, VU, OH</td>
</tr>
<tr>
<td>TM-81N2, CO2</td>
<td>Y40MS</td>
<td>F, H, VU, OH</td>
</tr>
<tr>
<td>HIGH STRENGTH, LOW ALLOY</td>
<td>IMPACTS TESTED @ -40°F.</td>
<td></td>
</tr>
<tr>
<td>TM-81N2, 75% Ar/25% CO2</td>
<td>Y40MS</td>
<td>F, H, VU, OH</td>
</tr>
<tr>
<td>HIGH STRENGTH, LOW ALLOY</td>
<td>IMPACTS TESTED @ -40°F.</td>
<td></td>
</tr>
<tr>
<td>TM-881K2, CO2</td>
<td>V42MS H10</td>
<td>F, H, VU, OH</td>
</tr>
</tbody>
</table>

* F = flat, H = horizontal, VU = vertical up, OH = overhead
These tables classify Hobart/Tri-Mark Flux-Cored filler metals according to AWS classifications. Where more than one filler metal has been recommended, please refer to the individual product descriptions in this catalog for the most suitable Tri-Mark filler metal.
LOW ALLOY
STICK ELECTRODE PACKAGING INFORMATION

10 lb. Can
- Hermetically-sealed cans keep electrodes protected and ready to use when opened.
- Easy open pull-tab with plastic lid to protect product after opening.

50 lb. Can 14” length
- Hermetically-sealed cans keep electrodes protected and ready for use when opened.
- Pull-tab for safe, trouble-free opening.
- Two separate pallets for convenient handling.

50 lb. Can 18” length
- Hermetically-sealed cans keep electrodes protected and ready for use when opened.
- Pull-tab for safe, trouble-free opening.
- Two separate pallets for convenient handling.

Weight: 1,320 pounds net, 1,465 gross
Stacking sequence: 3 wide, 4 deep & 2 high
Cartons per pallet: 24 cans

Weight: 2,450 pounds net, 2,540 gross
Stacking sequence: 7 wide, 7 deep & 1 high
Cartons per pallet: 49 cans

Weight: 2,000 pounds net, 2,235 gross
Stacking sequence: 4 wide, 2 deep & 5 high
Cartons per pallet: 40 cans

Weight: 1,000 pounds net, 1,150 gross
Stacking sequence: 5 wide, 6 deep & 2 high
Cartons per pallet: 60 cans

Overall Height: 40”
Width: 35”
Depth: 36”
33 lb. & 45 lb. Steel Reels

- Uses standard spool hub—no special adapters required
- Durable—designed to withstand most kinds of everyday wear and tear
- Recyclable—no need to separate from other steel scrap materials
- Available in: Quantum Arc

Steel Reel weight (empty): 1.1 lbs.

60 lb. Fiber Spool

- Convenient, easy to changeover
- Simplicity reduces changeover time, increases productivity
- More wire on spool means fewer changeovers
- Available in: Quantum Arc QCL

Spool weight (empty): 3 lbs.

600 lb. ROBOPAK

- Tangle-free feeding, no wire flip
- Compact drum to reduce floor-space requirements
- ROBOPAK protects wire from from manufacturing environment (dust, spatter, oil, etc.)
- Can be located away from the weld station for convenient change over
- Four drums per pallet reduces excess handling
- Available in: Quantum Arc QCL

Drum weight (empty): 19 lbs.
Test Description:
A torch is held six inches away from a sheet of densely grid graph paper. The wire is then fed through the torch until it punctures the paper. This procedure is repeated and the area of the punctures is outlined showing the wire deviation from the torch’s center point.

- Precision wire payout drum for automatic and robotic welding
- Straighter wire provides better weld joint tracking
- Higher weld quality due to the arc being consistently focused in the center of the weld joint
- Quality defects attributed to wire wander such as undercut and lack of fusion are essentially eliminated
- Improved wire feedability
- Extended liner and contact tip life

wire straightness shoot test results

<table>
<thead>
<tr>
<th>X-PAK DRUMS</th>
<th>COMPETITIVE DRUMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire Deviation = ± 15MM</td>
<td>Wire Deviation = ± 75MM</td>
</tr>
</tbody>
</table>

Inside view of wire in X-Pak drum
TUBULAR PACKAGING INFORMATION

LOW ALLOY

10 lb. Plastic Spool
- Color-coded labels for easy wire identification
- Colorful packaging—great for P.O.P. displays
- Handy application and wire size reference chart on back
- Individually packed for increased portability and protection

Arbor hole diameter: 2-1/16”
Width: 2-1/8”
Hub diameter: 3-1/8”
Center to center distance: 1-3/4”
Engaging hole diameter: 7/16”

Spool weight (empty): 0.8 lbs.

Weight: 40 lbs.
Spools per master carton: 4

Stacking sequence: 4 wide, 4 deep, 6 high
Master cartons per pallet: 48
Spools per pallet: 192

33 lb. Fiber Spool
- Uses standard spool hub—no special adapters required
- Durable—designed to withstand most kinds of everyday wear and tear
- Convenient, easy to change-over

Arbor hole diameter: 2-1/16”
Width: 4”
Hub diameter: 6-1/2”
Center to center distance: 1-3/4”
Engaging hole diameter: 7/16”

Spool weight (empty): 2.6 lbs.

Weight: 2376 lbs. net; 2645 lbs. gross (est.)
Stacking sequence: 3 wide, 3 deep, 6 high
Spools per pallet: 72

60 lb. Coil
- No spool to dispose of after wire is consumed
- Uses standard coil adapters
- More wire on coil means fewer changeovers
- Available in: HB BR

Inner diameter: 12”
Width: 4”
Outer diameter: 16-1/2”

Coil weight (empty): 4 oz.

Weight: 1,920 lbs. net; 1,987 lbs. gross (est.)
Stacking sequence: 2 wide, 2 deep, 8 high
Coils per pallet: 32
LOW ALLOY

TUBULAR PACKAGING INFORMATION

500 lb. X-Pak™
- Precision straight wire payout for robotic & automatic welding
- Wire wander is essentially eliminated
- Requires cone/bonnet direct pull type (no arm recommended)
- Lazy susan not recommended

Drum weight (empty): 19 lbs.

Diameter: 20-3/8"
Height: 32-1/4"

Weight: 2,000 lbs. net; 2,080 lbs. gross (est.)
Drums per pallet: 4

750 lb. X-Pak™
- Precision straight wire payout for robotic & automatic welding
- Wire wander is essentially eliminated
- Requires cone/bonnet direct pull type (no arm recommended)
- Lazy susan not recommended

Drum weight (empty): 20 lbs.

Diameter: 23"
Height: 35"

Weight: 3,000 lbs. net; 3,119 lbs. gross (est.)
Drums per pallet: 4
International

You can contact the Hobart offices nearest you as listed below. You can also call 1-800-424-1543 (U.S.) to locate your nearest Hobart distributor or visit our website www.hobartbrothers.com

<table>
<thead>
<tr>
<th>Regional Office - UAE</th>
<th>Regional Office - India</th>
<th>Regional Office - Asia</th>
<th>Regional Office - Canada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office</td>
<td>Hobart Brothers</td>
<td>Hobart Brothers</td>
<td>Hobart Brothers</td>
</tr>
<tr>
<td>Phone</td>
<td>101 Trade Square East</td>
<td>101 Trade Square East</td>
<td>P.O. Box 1558</td>
</tr>
<tr>
<td>Fax</td>
<td>Troy, OH 45373</td>
<td>Troy, OH 45373</td>
<td>807 Pattullo Ave.</td>
</tr>
<tr>
<td>E-mail</td>
<td>937-332-4000</td>
<td>937-332-4000</td>
<td>Woodstock, Ontario</td>
</tr>
<tr>
<td>Web site</td>
<td>937-332-5700</td>
<td>937-332-5700</td>
<td>Canada N4S 0A7</td>
</tr>
</tbody>
</table>

Miller Electric Beijing

Phone: +86-10-8739-7080
Fax: +86-10-8739-7960
E-mail: hhani@millermel.com

Latin America Headquarters

Phone: 920-735-4411
Fax: 920-735-4125
E-mail: international@millermel.com

Regional Office - Brazil

Phone: +55-11-5514-3366
Fax: +55-11-5891-7679
E-mail: itwsoldagem@osite.com.br
Web site: www.itwsoldagem.com.br

Regional Office - UK

Phone: +44-1204-473020
Fax: +44-1204-473029
E-mail: sales@itw-welding.co.uk
Web site: www.itw-welding.co.uk

Regional Office - France

Phone: +33-1-6004-1166
Fax: +33-1-6004-8860
E-mail: miller@itw-welding.fr
Web site: www.miller-france.com

Regional Office - Italy

Phone: +39-02-9829-01
Fax: +39-02-9829-0203
E-mail: millerit@itw-welding.it

Regional Office - Netherlands

Phone: +31-866-41444
Fax: +31-866-40880
E-mail: info@itw-welding.nl
Web site: www.itw-welding.com

Regional Office - Mexico

Phone: +52-55-5366-7370
Fax: +52-55-5366-7376
E-mail: jflore@millerwelds.com
Web site: www.itwweldingmexico.com

Welding Industries of Australia

Phone: +61-8-827-66494
Fax: +61-8-837-41192
Web site: www.welding.com.au

Weldwell New Zealand

Phone: +64-6-834-1600
Fax: +64-6-835-4568
E-mail: admin@weldwell.co.nz
Web site: www.weldwell.co.nz

Welding.org 1-800-332-9448 or 937-332-5000

Provides skill and technical training to career-oriented students and industry alike. Experienced welders, industry, and governmental agencies also rely on the Institute to provide technical, specialized, and certification training.

www.millerwelds.com 1-800-4-A-Miller (1-800-426-4553)

Founded in 1929, and a world leader in the manufacturing of arc welding and cutting equipment. Miller Electric manufactures welding power sources, wire feeders, welding guns and accessories, engine driven welding power sources/generators, automation welding controls, plasma arc cutting power sources, and resistance spot welding equipment.

www.smithequipment.com 1-800-843-7912

Manufactures since 1917 of premium, safety-engineered oxy-fuel cutting, welding and heating equipment, featuring the new Dual Guard Torch and Lifetime Warranty. Other products include specialty gas regulators, gas mixers and jeweler’s torches. All USA-made.

www.bernardwelds.com 1-800-946-2281

Manufactures premium MIG (GMAW) welding guns, including both air-cooled and water-cooled semi-automatic, fully-automatic, and robotic products, as well as all accessory and replacement items. Also manufactures the complete line of OXO brand heavy-duty air-cooled MIG guns.

www.weldcraft.com 1-800-752-7620

The world-leading manufacturer of Tig (GTAW) welding torches, consumables and accessories. A broad line of premium and value products includes the unique Crafter Series™, Legacy Series™, MicroTig™, Quick Connect System™, Supercool™, and Superflex™.

www.tempii.com 1-800-757-8301

Manufactures precise temperature-indicating markers, inks, paints, labels, welding accessories, and sterilization indicators. For almost 60 years, welders, engineers and scientists have relied on premium Tempii products to indicate temperature from 100°F to 2500°F.

www.jetline.com 1-949-951-1515

Designers and manufacturers of a full range of mechanized equipment and arc controls for welding, including Jetline and Cyclomatic. Jetline is your partner in welding automation — providing fixtures, arc controls, and system integration.

www.magnafux.com 1-847-657-5300

Offers a complete line of liquid penetrant and magnetic particle inspection equipment and accessories, as well as processing materials, all of which are designed specifically for the nondestructive testing (NDT) industry.

www.welding.org 1-800-332-9448 or 937-332-5000

Provides skill and technical training to career-oriented students and industry alike. Experienced welders, industry, and governmental agencies also rely on the Institute to provide technical, specialized, and certification training.

www.tregaskiss.com 1-877-737-3111 or 519-737-3000

Supplier of quality MIG welding torches and peripheral products. Brand names include TOUGH GUN®, Tgx®, TOUGH GARD®, TOUGH LOCK®, and SURESTART.
We're ISO 9002 certified. When you partner with HOBART, you can feel good knowing we meet ISO 9002 standards — the most rigorous standards for production and distribution around. It's your guarantee that the highest levels of quality, satisfaction and efficiency go into everything bearing the HOBART name.

Notice: The foregoing values represent test results under controlled laboratory conditions, not guarantees for use in the field. Actual use of the product may produce varying results due to conditions and welding techniques over which HOBART has no control, including but not limited to plate chemistry, weldment design, fabrication methods, wire size, welding procedure, service requirements and the environment. The purchaser is solely responsible for determining the suitability of HOBART products for the purchaser’s own use. Any prior representation shall not be binding. HOBART DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE WITH RESPECT TO ITS PRODUCTS.

Caution: Consumers should be thoroughly familiar with the safety precautions shown in the Warning Label posted on each shipment and American National Standard Z49.1 “Safety in Welding and Cutting” published by the American Welding Society, 550 NW LeJeune Road, Miami, Florida 33135; OSHA Safety and Health Standards, 29 CFT 1910 available from the U.S. Department of Labor, Washington, D.C. 20210.

Hobart Brothers Company
101 Trade Square East
Troy, OH 45373 USA
www.hobartbrothers.com
To place an order, contact the distributor nearest you.

©Hobart Brothers Company Printed in U.S.A.